Step |
Hyp |
Ref |
Expression |
1 |
|
sge0fsummptf.k |
|- F/ k ph |
2 |
|
sge0fsummptf.a |
|- ( ph -> A e. Fin ) |
3 |
|
sge0fsummptf.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
4 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
5 |
1 3 4
|
fmptdf |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,) +oo ) ) |
6 |
2 5
|
sge0fsum |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sum_ j e. A ( ( k e. A |-> B ) ` j ) ) |
7 |
|
fveq2 |
|- ( j = k -> ( ( k e. A |-> B ) ` j ) = ( ( k e. A |-> B ) ` k ) ) |
8 |
|
nfmpt1 |
|- F/_ k ( k e. A |-> B ) |
9 |
|
nfcv |
|- F/_ k j |
10 |
8 9
|
nffv |
|- F/_ k ( ( k e. A |-> B ) ` j ) |
11 |
|
nfcv |
|- F/_ j ( ( k e. A |-> B ) ` k ) |
12 |
7 10 11
|
cbvsum |
|- sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) |
13 |
12
|
a1i |
|- ( ph -> sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) ) |
14 |
|
simpr |
|- ( ( ph /\ k e. A ) -> k e. A ) |
15 |
4
|
fvmpt2 |
|- ( ( k e. A /\ B e. ( 0 [,) +oo ) ) -> ( ( k e. A |-> B ) ` k ) = B ) |
16 |
14 3 15
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) |
17 |
16
|
ex |
|- ( ph -> ( k e. A -> ( ( k e. A |-> B ) ` k ) = B ) ) |
18 |
1 17
|
ralrimi |
|- ( ph -> A. k e. A ( ( k e. A |-> B ) ` k ) = B ) |
19 |
18
|
sumeq2d |
|- ( ph -> sum_ k e. A ( ( k e. A |-> B ) ` k ) = sum_ k e. A B ) |
20 |
6 13 19
|
3eqtrd |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sum_ k e. A B ) |