| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0fsummptf.k |  |-  F/ k ph | 
						
							| 2 |  | sge0fsummptf.a |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | sge0fsummptf.b |  |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 4 |  | eqid |  |-  ( k e. A |-> B ) = ( k e. A |-> B ) | 
						
							| 5 | 1 3 4 | fmptdf |  |-  ( ph -> ( k e. A |-> B ) : A --> ( 0 [,) +oo ) ) | 
						
							| 6 | 2 5 | sge0fsum |  |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sum_ j e. A ( ( k e. A |-> B ) ` j ) ) | 
						
							| 7 |  | fveq2 |  |-  ( j = k -> ( ( k e. A |-> B ) ` j ) = ( ( k e. A |-> B ) ` k ) ) | 
						
							| 8 |  | nfmpt1 |  |-  F/_ k ( k e. A |-> B ) | 
						
							| 9 |  | nfcv |  |-  F/_ k j | 
						
							| 10 | 8 9 | nffv |  |-  F/_ k ( ( k e. A |-> B ) ` j ) | 
						
							| 11 |  | nfcv |  |-  F/_ j ( ( k e. A |-> B ) ` k ) | 
						
							| 12 | 7 10 11 | cbvsum |  |-  sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ k e. A ) -> k e. A ) | 
						
							| 15 | 4 | fvmpt2 |  |-  ( ( k e. A /\ B e. ( 0 [,) +oo ) ) -> ( ( k e. A |-> B ) ` k ) = B ) | 
						
							| 16 | 14 3 15 | syl2anc |  |-  ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) | 
						
							| 17 | 16 | ex |  |-  ( ph -> ( k e. A -> ( ( k e. A |-> B ) ` k ) = B ) ) | 
						
							| 18 | 1 17 | ralrimi |  |-  ( ph -> A. k e. A ( ( k e. A |-> B ) ` k ) = B ) | 
						
							| 19 | 18 | sumeq2d |  |-  ( ph -> sum_ k e. A ( ( k e. A |-> B ) ` k ) = sum_ k e. A B ) | 
						
							| 20 | 6 13 19 | 3eqtrd |  |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sum_ k e. A B ) |