Metamath Proof Explorer


Theorem sge0fsummptf

Description: The generalized sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +oo (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0fsummptf.k
|- F/ k ph
sge0fsummptf.a
|- ( ph -> A e. Fin )
sge0fsummptf.b
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) )
Assertion sge0fsummptf
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sum_ k e. A B )

Proof

Step Hyp Ref Expression
1 sge0fsummptf.k
 |-  F/ k ph
2 sge0fsummptf.a
 |-  ( ph -> A e. Fin )
3 sge0fsummptf.b
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) )
4 eqid
 |-  ( k e. A |-> B ) = ( k e. A |-> B )
5 1 3 4 fmptdf
 |-  ( ph -> ( k e. A |-> B ) : A --> ( 0 [,) +oo ) )
6 2 5 sge0fsum
 |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sum_ j e. A ( ( k e. A |-> B ) ` j ) )
7 fveq2
 |-  ( j = k -> ( ( k e. A |-> B ) ` j ) = ( ( k e. A |-> B ) ` k ) )
8 nfmpt1
 |-  F/_ k ( k e. A |-> B )
9 nfcv
 |-  F/_ k j
10 8 9 nffv
 |-  F/_ k ( ( k e. A |-> B ) ` j )
11 nfcv
 |-  F/_ j ( ( k e. A |-> B ) ` k )
12 7 10 11 cbvsum
 |-  sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k )
13 12 a1i
 |-  ( ph -> sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) )
14 simpr
 |-  ( ( ph /\ k e. A ) -> k e. A )
15 4 fvmpt2
 |-  ( ( k e. A /\ B e. ( 0 [,) +oo ) ) -> ( ( k e. A |-> B ) ` k ) = B )
16 14 3 15 syl2anc
 |-  ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B )
17 16 ex
 |-  ( ph -> ( k e. A -> ( ( k e. A |-> B ) ` k ) = B ) )
18 1 17 ralrimi
 |-  ( ph -> A. k e. A ( ( k e. A |-> B ) ` k ) = B )
19 18 sumeq2d
 |-  ( ph -> sum_ k e. A ( ( k e. A |-> B ) ` k ) = sum_ k e. A B )
20 6 13 19 3eqtrd
 |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sum_ k e. A B )