Description: The generalized sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +oo (Contributed by Glauco Siliprandi, 21-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0fsummptf.k | |
|
sge0fsummptf.a | |
||
sge0fsummptf.b | |
||
Assertion | sge0fsummptf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0fsummptf.k | |
|
2 | sge0fsummptf.a | |
|
3 | sge0fsummptf.b | |
|
4 | eqid | |
|
5 | 1 3 4 | fmptdf | |
6 | 2 5 | sge0fsum | |
7 | fveq2 | |
|
8 | nfcv | |
|
9 | nfcv | |
|
10 | nfmpt1 | |
|
11 | nfcv | |
|
12 | 10 11 | nffv | |
13 | nfcv | |
|
14 | 7 8 9 12 13 | cbvsum | |
15 | 14 | a1i | |
16 | simpr | |
|
17 | 4 | fvmpt2 | |
18 | 16 3 17 | syl2anc | |
19 | 18 | ex | |
20 | 1 19 | ralrimi | |
21 | 20 | sumeq2d | |
22 | 6 15 21 | 3eqtrd | |