Metamath Proof Explorer


Theorem sge0fsummptf

Description: The generalized sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +oo (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0fsummptf.k kφ
sge0fsummptf.a φAFin
sge0fsummptf.b φkAB0+∞
Assertion sge0fsummptf φsum^kAB=kAB

Proof

Step Hyp Ref Expression
1 sge0fsummptf.k kφ
2 sge0fsummptf.a φAFin
3 sge0fsummptf.b φkAB0+∞
4 eqid kAB=kAB
5 1 3 4 fmptdf φkAB:A0+∞
6 2 5 sge0fsum φsum^kAB=jAkABj
7 fveq2 j=kkABj=kABk
8 nfcv _kA
9 nfcv _jA
10 nfmpt1 _kkAB
11 nfcv _kj
12 10 11 nffv _kkABj
13 nfcv _jkABk
14 7 8 9 12 13 cbvsum jAkABj=kAkABk
15 14 a1i φjAkABj=kAkABk
16 simpr φkAkA
17 4 fvmpt2 kAB0+∞kABk=B
18 16 3 17 syl2anc φkAkABk=B
19 18 ex φkAkABk=B
20 1 19 ralrimi φkAkABk=B
21 20 sumeq2d φkAkABk=kAB
22 6 15 21 3eqtrd φsum^kAB=kAB