Metamath Proof Explorer


Theorem sge0fsummptf

Description: The generalized sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +oo (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0fsummptf.k 𝑘 𝜑
sge0fsummptf.a ( 𝜑𝐴 ∈ Fin )
sge0fsummptf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
Assertion sge0fsummptf ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = Σ 𝑘𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 sge0fsummptf.k 𝑘 𝜑
2 sge0fsummptf.a ( 𝜑𝐴 ∈ Fin )
3 sge0fsummptf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
4 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
5 1 3 4 fmptdf ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) )
6 2 5 sge0fsum ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = Σ 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) )
7 fveq2 ( 𝑗 = 𝑘 → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) )
8 nfcv 𝑘 𝐴
9 nfcv 𝑗 𝐴
10 nfmpt1 𝑘 ( 𝑘𝐴𝐵 )
11 nfcv 𝑘 𝑗
12 10 11 nffv 𝑘 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 )
13 nfcv 𝑗 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 )
14 7 8 9 12 13 cbvsum Σ 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = Σ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 )
15 14 a1i ( 𝜑 → Σ 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = Σ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) )
16 simpr ( ( 𝜑𝑘𝐴 ) → 𝑘𝐴 )
17 4 fvmpt2 ( ( 𝑘𝐴𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = 𝐵 )
18 16 3 17 syl2anc ( ( 𝜑𝑘𝐴 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = 𝐵 )
19 18 ex ( 𝜑 → ( 𝑘𝐴 → ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = 𝐵 ) )
20 1 19 ralrimi ( 𝜑 → ∀ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = 𝐵 )
21 20 sumeq2d ( 𝜑 → Σ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = Σ 𝑘𝐴 𝐵 )
22 6 15 21 3eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = Σ 𝑘𝐴 𝐵 )