| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0fsummptf.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | sge0fsummptf.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | sge0fsummptf.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑘  ∈  𝐴  ↦  𝐵 )  =  ( 𝑘  ∈  𝐴  ↦  𝐵 ) | 
						
							| 5 | 1 3 4 | fmptdf | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 6 | 2 5 | sge0fsum | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐵 ) )  =  Σ 𝑗  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑗 ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑗 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑘 ) ) | 
						
							| 8 |  | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘  ∈  𝐴  ↦  𝐵 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑘 𝑗 | 
						
							| 10 | 8 9 | nffv | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑗 ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑗 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑘 ) | 
						
							| 12 | 7 10 11 | cbvsum | ⊢ Σ 𝑗  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑗 )  =  Σ 𝑘  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑘 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  Σ 𝑗  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑗 )  =  Σ 𝑘  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑘 ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  𝐴 ) | 
						
							| 15 | 4 | fvmpt2 | ⊢ ( ( 𝑘  ∈  𝐴  ∧  𝐵  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑘 )  =  𝐵 ) | 
						
							| 16 | 14 3 15 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑘 )  =  𝐵 ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑘 )  =  𝐵 ) ) | 
						
							| 18 | 1 17 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑘 )  =  𝐵 ) | 
						
							| 19 | 18 | sumeq2d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 20 | 6 13 19 | 3eqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐵 ) )  =  Σ 𝑘  ∈  𝐴 𝐵 ) |