Step |
Hyp |
Ref |
Expression |
1 |
|
sge0fsummptf.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
sge0fsummptf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
sge0fsummptf.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
4 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
5 |
1 3 4
|
fmptdf |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
6 |
2 5
|
sge0fsum |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) |
8 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
10 |
8 9
|
nffv |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) |
12 |
7 10 11
|
cbvsum |
⊢ Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
15 |
4
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
16 |
14 3 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) ) |
18 |
1 17
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
19 |
18
|
sumeq2d |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
20 |
6 13 19
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |