| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0snmptf.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
sge0snmptf.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
sge0snmptf.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 4 |
|
sge0snmptf.b |
⊢ ( 𝑘 = 𝐴 → 𝐵 = 𝐶 ) |
| 5 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝐴 } → 𝑘 = 𝐴 ) |
| 6 |
5 4
|
syl |
⊢ ( 𝑘 ∈ { 𝐴 } → 𝐵 = 𝐶 ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → 𝐵 = 𝐶 ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 9 |
7 8
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 10 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝐴 } ↦ 𝐵 ) = ( 𝑘 ∈ { 𝐴 } ↦ 𝐵 ) |
| 11 |
1 9 10
|
fmptdf |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝐴 } ↦ 𝐵 ) : { 𝐴 } ⟶ ( 0 [,] +∞ ) ) |
| 12 |
2 11
|
sge0sn |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ { 𝐴 } ↦ 𝐵 ) ) = ( ( 𝑘 ∈ { 𝐴 } ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 13 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
| 14 |
2 13
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
| 15 |
10 4 14 3
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝐴 } ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
| 16 |
12 15
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ { 𝐴 } ↦ 𝐵 ) ) = 𝐶 ) |