Metamath Proof Explorer


Theorem sge0ge0mpt

Description: The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ge0mpt.k 𝑘 𝜑
sge0ge0mpt.a ( 𝜑𝐴𝑉 )
sge0ge0mpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
Assertion sge0ge0mpt ( 𝜑 → 0 ≤ ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sge0ge0mpt.k 𝑘 𝜑
2 sge0ge0mpt.a ( 𝜑𝐴𝑉 )
3 sge0ge0mpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
5 1 3 4 fmptdf ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
6 2 5 sge0ge0 ( 𝜑 → 0 ≤ ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) )