Description: The of nonnegative extended reals is a real number if and only if it is not +oo . (Contributed by Glauco Siliprandi, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sge0repnfmpt.k | ⊢ Ⅎ 𝑘 𝜑 | |
| sge0repnfmpt.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| sge0repnfmpt.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) | ||
| Assertion | sge0repnfmpt | ⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0repnfmpt.k | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | sge0repnfmpt.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | sge0repnfmpt.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) | |
| 4 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 5 | 1 3 4 | fmptdf | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 6 | 2 5 | sge0repnf | ⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = +∞ ) ) |