Metamath Proof Explorer


Theorem sge0repnfmpt

Description: The of nonnegative extended reals is a real number if and only if it is not +oo . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0repnfmpt.k 𝑘 𝜑
sge0repnfmpt.a ( 𝜑𝐴𝑉 )
sge0repnfmpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
Assertion sge0repnfmpt ( 𝜑 → ( ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = +∞ ) )

Proof

Step Hyp Ref Expression
1 sge0repnfmpt.k 𝑘 𝜑
2 sge0repnfmpt.a ( 𝜑𝐴𝑉 )
3 sge0repnfmpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
5 1 3 4 fmptdf ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
6 2 5 sge0repnf ( 𝜑 → ( ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = +∞ ) )