Metamath Proof Explorer


Theorem sge0repnfmpt

Description: The of nonnegative extended reals is a real number if and only if it is not +oo . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0repnfmpt.k k φ
sge0repnfmpt.a φ A V
sge0repnfmpt.b φ k A B 0 +∞
Assertion sge0repnfmpt φ sum^ k A B ¬ sum^ k A B = +∞

Proof

Step Hyp Ref Expression
1 sge0repnfmpt.k k φ
2 sge0repnfmpt.a φ A V
3 sge0repnfmpt.b φ k A B 0 +∞
4 eqid k A B = k A B
5 1 3 4 fmptdf φ k A B : A 0 +∞
6 2 5 sge0repnf φ sum^ k A B ¬ sum^ k A B = +∞