Metamath Proof Explorer


Theorem sge0pnffigtmpt

Description: If the generalized sum of nonnegative reals is +oo , then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0pnffigtmpt.k kφ
sge0pnffigtmpt.a φAV
sge0pnffigtmpt.b φkAB0+∞
sge0pnffigtmpt.p φsum^kAB=+∞
sge0pnffigtmpt.y φY
Assertion sge0pnffigtmpt φx𝒫AFinY<sum^kxB

Proof

Step Hyp Ref Expression
1 sge0pnffigtmpt.k kφ
2 sge0pnffigtmpt.a φAV
3 sge0pnffigtmpt.b φkAB0+∞
4 sge0pnffigtmpt.p φsum^kAB=+∞
5 sge0pnffigtmpt.y φY
6 eqid kAB=kAB
7 1 3 6 fmptdf φkAB:A0+∞
8 2 7 4 5 sge0pnffigt φx𝒫AFinY<sum^kABx
9 simpr x𝒫AFinY<sum^kABxY<sum^kABx
10 elpwinss x𝒫AFinxA
11 10 adantr x𝒫AFinY<sum^kABxxA
12 11 resmptd x𝒫AFinY<sum^kABxkABx=kxB
13 12 fveq2d x𝒫AFinY<sum^kABxsum^kABx=sum^kxB
14 9 13 breqtrd x𝒫AFinY<sum^kABxY<sum^kxB
15 14 ex x𝒫AFinY<sum^kABxY<sum^kxB
16 15 adantl φx𝒫AFinY<sum^kABxY<sum^kxB
17 16 reximdva φx𝒫AFinY<sum^kABxx𝒫AFinY<sum^kxB
18 8 17 mpd φx𝒫AFinY<sum^kxB