Metamath Proof Explorer


Theorem sge0splitsn

Description: Separate out a term in a generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0splitsn.ph k φ
sge0splitsn.a φ A V
sge0splitsn.b φ B W
sge0splitsn.n φ ¬ B A
sge0splitsn.c φ k A C 0 +∞
sge0splitsn.d k = B C = D
sge0splitsn.e φ D 0 +∞
Assertion sge0splitsn φ sum^ k A B C = sum^ k A C + 𝑒 D

Proof

Step Hyp Ref Expression
1 sge0splitsn.ph k φ
2 sge0splitsn.a φ A V
3 sge0splitsn.b φ B W
4 sge0splitsn.n φ ¬ B A
5 sge0splitsn.c φ k A C 0 +∞
6 sge0splitsn.d k = B C = D
7 sge0splitsn.e φ D 0 +∞
8 snfi B Fin
9 8 a1i φ B Fin
10 9 elexd φ B V
11 disjsn A B = ¬ B A
12 4 11 sylibr φ A B =
13 elsni k B k = B
14 6 adantl φ k = B C = D
15 13 14 sylan2 φ k B C = D
16 7 adantr φ k B D 0 +∞
17 15 16 eqeltrd φ k B C 0 +∞
18 1 2 10 12 5 17 sge0splitmpt φ sum^ k A B C = sum^ k A C + 𝑒 sum^ k B C
19 1 3 7 6 sge0snmptf φ sum^ k B C = D
20 19 oveq2d φ sum^ k A C + 𝑒 sum^ k B C = sum^ k A C + 𝑒 D
21 18 20 eqtrd φ sum^ k A B C = sum^ k A C + 𝑒 D