Step |
Hyp |
Ref |
Expression |
1 |
|
sge0splitsn.ph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
sge0splitsn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
sge0splitsn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
|
sge0splitsn.n |
⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐴 ) |
5 |
|
sge0splitsn.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
6 |
|
sge0splitsn.d |
⊢ ( 𝑘 = 𝐵 → 𝐶 = 𝐷 ) |
7 |
|
sge0splitsn.e |
⊢ ( 𝜑 → 𝐷 ∈ ( 0 [,] +∞ ) ) |
8 |
|
snfi |
⊢ { 𝐵 } ∈ Fin |
9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝐵 } ∈ Fin ) |
10 |
9
|
elexd |
⊢ ( 𝜑 → { 𝐵 } ∈ V ) |
11 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |
12 |
4 11
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ { 𝐵 } ) = ∅ ) |
13 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝐵 } → 𝑘 = 𝐵 ) |
14 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐷 ) |
15 |
13 14
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐵 } ) → 𝐶 = 𝐷 ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐵 } ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
17 |
15 16
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐵 } ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
18 |
1 2 10 12 5 17
|
sge0splitmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ { 𝐵 } ↦ 𝐶 ) ) ) ) |
19 |
1 3 7 6
|
sge0snmptf |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ { 𝐵 } ↦ 𝐶 ) ) = 𝐷 ) |
20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ { 𝐵 } ↦ 𝐶 ) ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) +𝑒 𝐷 ) ) |
21 |
18 20
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 𝐶 ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) +𝑒 𝐷 ) ) |