| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0splitsn.ph |
|- F/ k ph |
| 2 |
|
sge0splitsn.a |
|- ( ph -> A e. V ) |
| 3 |
|
sge0splitsn.b |
|- ( ph -> B e. W ) |
| 4 |
|
sge0splitsn.n |
|- ( ph -> -. B e. A ) |
| 5 |
|
sge0splitsn.c |
|- ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) ) |
| 6 |
|
sge0splitsn.d |
|- ( k = B -> C = D ) |
| 7 |
|
sge0splitsn.e |
|- ( ph -> D e. ( 0 [,] +oo ) ) |
| 8 |
|
snfi |
|- { B } e. Fin |
| 9 |
8
|
a1i |
|- ( ph -> { B } e. Fin ) |
| 10 |
9
|
elexd |
|- ( ph -> { B } e. _V ) |
| 11 |
|
disjsn |
|- ( ( A i^i { B } ) = (/) <-> -. B e. A ) |
| 12 |
4 11
|
sylibr |
|- ( ph -> ( A i^i { B } ) = (/) ) |
| 13 |
|
elsni |
|- ( k e. { B } -> k = B ) |
| 14 |
6
|
adantl |
|- ( ( ph /\ k = B ) -> C = D ) |
| 15 |
13 14
|
sylan2 |
|- ( ( ph /\ k e. { B } ) -> C = D ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ k e. { B } ) -> D e. ( 0 [,] +oo ) ) |
| 17 |
15 16
|
eqeltrd |
|- ( ( ph /\ k e. { B } ) -> C e. ( 0 [,] +oo ) ) |
| 18 |
1 2 10 12 5 17
|
sge0splitmpt |
|- ( ph -> ( sum^ ` ( k e. ( A u. { B } ) |-> C ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e ( sum^ ` ( k e. { B } |-> C ) ) ) ) |
| 19 |
1 3 7 6
|
sge0snmptf |
|- ( ph -> ( sum^ ` ( k e. { B } |-> C ) ) = D ) |
| 20 |
19
|
oveq2d |
|- ( ph -> ( ( sum^ ` ( k e. A |-> C ) ) +e ( sum^ ` ( k e. { B } |-> C ) ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e D ) ) |
| 21 |
18 20
|
eqtrd |
|- ( ph -> ( sum^ ` ( k e. ( A u. { B } ) |-> C ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e D ) ) |