Metamath Proof Explorer


Theorem sge0splitsn

Description: Separate out a term in a generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0splitsn.ph
|- F/ k ph
sge0splitsn.a
|- ( ph -> A e. V )
sge0splitsn.b
|- ( ph -> B e. W )
sge0splitsn.n
|- ( ph -> -. B e. A )
sge0splitsn.c
|- ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) )
sge0splitsn.d
|- ( k = B -> C = D )
sge0splitsn.e
|- ( ph -> D e. ( 0 [,] +oo ) )
Assertion sge0splitsn
|- ( ph -> ( sum^ ` ( k e. ( A u. { B } ) |-> C ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e D ) )

Proof

Step Hyp Ref Expression
1 sge0splitsn.ph
 |-  F/ k ph
2 sge0splitsn.a
 |-  ( ph -> A e. V )
3 sge0splitsn.b
 |-  ( ph -> B e. W )
4 sge0splitsn.n
 |-  ( ph -> -. B e. A )
5 sge0splitsn.c
 |-  ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) )
6 sge0splitsn.d
 |-  ( k = B -> C = D )
7 sge0splitsn.e
 |-  ( ph -> D e. ( 0 [,] +oo ) )
8 snfi
 |-  { B } e. Fin
9 8 a1i
 |-  ( ph -> { B } e. Fin )
10 9 elexd
 |-  ( ph -> { B } e. _V )
11 disjsn
 |-  ( ( A i^i { B } ) = (/) <-> -. B e. A )
12 4 11 sylibr
 |-  ( ph -> ( A i^i { B } ) = (/) )
13 elsni
 |-  ( k e. { B } -> k = B )
14 6 adantl
 |-  ( ( ph /\ k = B ) -> C = D )
15 13 14 sylan2
 |-  ( ( ph /\ k e. { B } ) -> C = D )
16 7 adantr
 |-  ( ( ph /\ k e. { B } ) -> D e. ( 0 [,] +oo ) )
17 15 16 eqeltrd
 |-  ( ( ph /\ k e. { B } ) -> C e. ( 0 [,] +oo ) )
18 1 2 10 12 5 17 sge0splitmpt
 |-  ( ph -> ( sum^ ` ( k e. ( A u. { B } ) |-> C ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e ( sum^ ` ( k e. { B } |-> C ) ) ) )
19 1 3 7 6 sge0snmptf
 |-  ( ph -> ( sum^ ` ( k e. { B } |-> C ) ) = D )
20 19 oveq2d
 |-  ( ph -> ( ( sum^ ` ( k e. A |-> C ) ) +e ( sum^ ` ( k e. { B } |-> C ) ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e D ) )
21 18 20 eqtrd
 |-  ( ph -> ( sum^ ` ( k e. ( A u. { B } ) |-> C ) ) = ( ( sum^ ` ( k e. A |-> C ) ) +e D ) )