| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0pnffsumgt.k |  |-  F/ k ph | 
						
							| 2 |  | sge0pnffsumgt.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | sge0pnffsumgt.b |  |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 4 |  | sge0pnffsumgt.p |  |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) = +oo ) | 
						
							| 5 |  | sge0pnffsumgt.y |  |-  ( ph -> Y e. RR ) | 
						
							| 6 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 7 | 6 3 | sselid |  |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) | 
						
							| 8 | 1 2 7 4 5 | sge0pnffigtmpt |  |-  ( ph -> E. x e. ( ~P A i^i Fin ) Y < ( sum^ ` ( k e. x |-> B ) ) ) | 
						
							| 9 |  | simpr |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ Y < ( sum^ ` ( k e. x |-> B ) ) ) -> Y < ( sum^ ` ( k e. x |-> B ) ) ) | 
						
							| 10 |  | nfv |  |-  F/ k x e. ( ~P A i^i Fin ) | 
						
							| 11 | 1 10 | nfan |  |-  F/ k ( ph /\ x e. ( ~P A i^i Fin ) ) | 
						
							| 12 |  | elinel2 |  |-  ( x e. ( ~P A i^i Fin ) -> x e. Fin ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. Fin ) | 
						
							| 14 |  | simpll |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> ph ) | 
						
							| 15 |  | elpwinss |  |-  ( x e. ( ~P A i^i Fin ) -> x C_ A ) | 
						
							| 16 | 15 | sselda |  |-  ( ( x e. ( ~P A i^i Fin ) /\ k e. x ) -> k e. A ) | 
						
							| 17 | 16 | adantll |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> k e. A ) | 
						
							| 18 | 14 17 3 | syl2anc |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 19 | 11 13 18 | sge0fsummptf |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( sum^ ` ( k e. x |-> B ) ) = sum_ k e. x B ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ Y < ( sum^ ` ( k e. x |-> B ) ) ) -> ( sum^ ` ( k e. x |-> B ) ) = sum_ k e. x B ) | 
						
							| 21 | 9 20 | breqtrd |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ Y < ( sum^ ` ( k e. x |-> B ) ) ) -> Y < sum_ k e. x B ) | 
						
							| 22 | 21 | ex |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( Y < ( sum^ ` ( k e. x |-> B ) ) -> Y < sum_ k e. x B ) ) | 
						
							| 23 | 22 | reximdva |  |-  ( ph -> ( E. x e. ( ~P A i^i Fin ) Y < ( sum^ ` ( k e. x |-> B ) ) -> E. x e. ( ~P A i^i Fin ) Y < sum_ k e. x B ) ) | 
						
							| 24 | 8 23 | mpd |  |-  ( ph -> E. x e. ( ~P A i^i Fin ) Y < sum_ k e. x B ) |