Metamath Proof Explorer


Theorem sge0snmptf

Description: A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0snmptf.k
|- F/ k ph
sge0snmptf.a
|- ( ph -> A e. V )
sge0snmptf.c
|- ( ph -> C e. ( 0 [,] +oo ) )
sge0snmptf.b
|- ( k = A -> B = C )
Assertion sge0snmptf
|- ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = C )

Proof

Step Hyp Ref Expression
1 sge0snmptf.k
 |-  F/ k ph
2 sge0snmptf.a
 |-  ( ph -> A e. V )
3 sge0snmptf.c
 |-  ( ph -> C e. ( 0 [,] +oo ) )
4 sge0snmptf.b
 |-  ( k = A -> B = C )
5 elsni
 |-  ( k e. { A } -> k = A )
6 5 4 syl
 |-  ( k e. { A } -> B = C )
7 6 adantl
 |-  ( ( ph /\ k e. { A } ) -> B = C )
8 3 adantr
 |-  ( ( ph /\ k e. { A } ) -> C e. ( 0 [,] +oo ) )
9 7 8 eqeltrd
 |-  ( ( ph /\ k e. { A } ) -> B e. ( 0 [,] +oo ) )
10 eqid
 |-  ( k e. { A } |-> B ) = ( k e. { A } |-> B )
11 1 9 10 fmptdf
 |-  ( ph -> ( k e. { A } |-> B ) : { A } --> ( 0 [,] +oo ) )
12 2 11 sge0sn
 |-  ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = ( ( k e. { A } |-> B ) ` A ) )
13 snidg
 |-  ( A e. V -> A e. { A } )
14 2 13 syl
 |-  ( ph -> A e. { A } )
15 10 4 14 3 fvmptd3
 |-  ( ph -> ( ( k e. { A } |-> B ) ` A ) = C )
16 12 15 eqtrd
 |-  ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = C )