| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0snmptf.k |
|- F/ k ph |
| 2 |
|
sge0snmptf.a |
|- ( ph -> A e. V ) |
| 3 |
|
sge0snmptf.c |
|- ( ph -> C e. ( 0 [,] +oo ) ) |
| 4 |
|
sge0snmptf.b |
|- ( k = A -> B = C ) |
| 5 |
|
elsni |
|- ( k e. { A } -> k = A ) |
| 6 |
5 4
|
syl |
|- ( k e. { A } -> B = C ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ k e. { A } ) -> B = C ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ k e. { A } ) -> C e. ( 0 [,] +oo ) ) |
| 9 |
7 8
|
eqeltrd |
|- ( ( ph /\ k e. { A } ) -> B e. ( 0 [,] +oo ) ) |
| 10 |
|
eqid |
|- ( k e. { A } |-> B ) = ( k e. { A } |-> B ) |
| 11 |
1 9 10
|
fmptdf |
|- ( ph -> ( k e. { A } |-> B ) : { A } --> ( 0 [,] +oo ) ) |
| 12 |
2 11
|
sge0sn |
|- ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = ( ( k e. { A } |-> B ) ` A ) ) |
| 13 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
| 14 |
2 13
|
syl |
|- ( ph -> A e. { A } ) |
| 15 |
10 4 14 3
|
fvmptd3 |
|- ( ph -> ( ( k e. { A } |-> B ) ` A ) = C ) |
| 16 |
12 15
|
eqtrd |
|- ( ph -> ( sum^ ` ( k e. { A } |-> B ) ) = C ) |