Metamath Proof Explorer


Theorem sge0ge0mpt

Description: The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ge0mpt.k
|- F/ k ph
sge0ge0mpt.a
|- ( ph -> A e. V )
sge0ge0mpt.b
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
Assertion sge0ge0mpt
|- ( ph -> 0 <_ ( sum^ ` ( k e. A |-> B ) ) )

Proof

Step Hyp Ref Expression
1 sge0ge0mpt.k
 |-  F/ k ph
2 sge0ge0mpt.a
 |-  ( ph -> A e. V )
3 sge0ge0mpt.b
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
4 eqid
 |-  ( k e. A |-> B ) = ( k e. A |-> B )
5 1 3 4 fmptdf
 |-  ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) )
6 2 5 sge0ge0
 |-  ( ph -> 0 <_ ( sum^ ` ( k e. A |-> B ) ) )