Description: The of nonnegative extended reals is a real number if and only if it is not +oo . (Contributed by Glauco Siliprandi, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sge0repnfmpt.k | |- F/ k ph |
|
| sge0repnfmpt.a | |- ( ph -> A e. V ) |
||
| sge0repnfmpt.b | |- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
||
| Assertion | sge0repnfmpt | |- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0repnfmpt.k | |- F/ k ph |
|
| 2 | sge0repnfmpt.a | |- ( ph -> A e. V ) |
|
| 3 | sge0repnfmpt.b | |- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
|
| 4 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 5 | 1 3 4 | fmptdf | |- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
| 6 | 2 5 | sge0repnf | |- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) ) |