| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0isummpt2.kph |
|- F/ k ph |
| 2 |
|
sge0isummpt2.a |
|- ( ( ph /\ k e. Z ) -> A e. ( 0 [,) +oo ) ) |
| 3 |
|
sge0isummpt2.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
sge0isummpt2.z |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
sge0isummpt2.b |
|- ( ph -> seq M ( + , ( k e. Z |-> A ) ) ~~> B ) |
| 6 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
| 7 |
|
nfv |
|- F/ k j e. Z |
| 8 |
1 7
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
| 9 |
|
nfcv |
|- F/_ k j |
| 10 |
9
|
nfcsb1 |
|- F/_ k [_ j / k ]_ A |
| 11 |
10
|
nfel1 |
|- F/ k [_ j / k ]_ A e. ( 0 [,) +oo ) |
| 12 |
8 11
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. ( 0 [,) +oo ) ) |
| 13 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
| 14 |
13
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
| 15 |
|
csbeq1a |
|- ( k = j -> A = [_ j / k ]_ A ) |
| 16 |
15
|
eleq1d |
|- ( k = j -> ( A e. ( 0 [,) +oo ) <-> [_ j / k ]_ A e. ( 0 [,) +oo ) ) ) |
| 17 |
14 16
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> A e. ( 0 [,) +oo ) ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. ( 0 [,) +oo ) ) ) ) |
| 18 |
12 17 2
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. ( 0 [,) +oo ) ) |
| 19 |
|
nfcv |
|- F/_ i A |
| 20 |
|
nfcsb1v |
|- F/_ k [_ i / k ]_ A |
| 21 |
|
csbeq1a |
|- ( k = i -> A = [_ i / k ]_ A ) |
| 22 |
19 20 21
|
cbvmpt |
|- ( k e. Z |-> A ) = ( i e. Z |-> [_ i / k ]_ A ) |
| 23 |
22
|
eqcomi |
|- ( i e. Z |-> [_ i / k ]_ A ) = ( k e. Z |-> A ) |
| 24 |
9 10 15 23
|
fvmptf |
|- ( ( j e. Z /\ [_ j / k ]_ A e. ( 0 [,) +oo ) ) -> ( ( i e. Z |-> [_ i / k ]_ A ) ` j ) = [_ j / k ]_ A ) |
| 25 |
6 18 24
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( ( i e. Z |-> [_ i / k ]_ A ) ` j ) = [_ j / k ]_ A ) |
| 26 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 27 |
|
ax-resscn |
|- RR C_ CC |
| 28 |
26 27
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
| 29 |
28 18
|
sselid |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) |
| 30 |
22
|
a1i |
|- ( ph -> ( k e. Z |-> A ) = ( i e. Z |-> [_ i / k ]_ A ) ) |
| 31 |
30
|
seqeq3d |
|- ( ph -> seq M ( + , ( k e. Z |-> A ) ) = seq M ( + , ( i e. Z |-> [_ i / k ]_ A ) ) ) |
| 32 |
31
|
breq1d |
|- ( ph -> ( seq M ( + , ( k e. Z |-> A ) ) ~~> B <-> seq M ( + , ( i e. Z |-> [_ i / k ]_ A ) ) ~~> B ) ) |
| 33 |
5 32
|
mpbid |
|- ( ph -> seq M ( + , ( i e. Z |-> [_ i / k ]_ A ) ) ~~> B ) |
| 34 |
4 3 25 29 33
|
isumclim |
|- ( ph -> sum_ j e. Z [_ j / k ]_ A = B ) |
| 35 |
|
nfcv |
|- F/_ j A |
| 36 |
15 35 10
|
cbvsum |
|- sum_ k e. Z A = sum_ j e. Z [_ j / k ]_ A |
| 37 |
36
|
a1i |
|- ( ph -> sum_ k e. Z A = sum_ j e. Z [_ j / k ]_ A ) |
| 38 |
1 2 3 4 5
|
sge0isummpt |
|- ( ph -> ( sum^ ` ( k e. Z |-> A ) ) = B ) |
| 39 |
34 37 38
|
3eqtr4rd |
|- ( ph -> ( sum^ ` ( k e. Z |-> A ) ) = sum_ k e. Z A ) |