Step |
Hyp |
Ref |
Expression |
1 |
|
voliunsge0lem.s |
⊢ 𝑆 = seq 1 ( + , 𝐺 ) |
2 |
|
voliunsge0lem.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
3 |
|
voliunsge0lem.e |
⊢ ( 𝜑 → 𝐸 : ℕ ⟶ dom vol ) |
4 |
|
voliunsge0lem.d |
⊢ ( 𝜑 → Disj 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
5 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
6 |
|
nfcv |
⊢ Ⅎ 𝑛 vol |
7 |
|
nfiu1 |
⊢ Ⅎ 𝑛 ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) |
8 |
6 7
|
nffv |
⊢ Ⅎ 𝑛 ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
9 |
8
|
nfeq1 |
⊢ Ⅎ 𝑛 ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = +∞ |
10 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
11 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
13 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) ∈ dom vol ) |
14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ∈ dom vol ) |
15 |
|
iunmbl |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ∈ dom vol → ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ∈ dom vol ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ∈ dom vol ) |
17 |
12 16
|
ffvelrnd |
⊢ ( 𝜑 → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
18 |
10 17
|
sselid |
⊢ ( 𝜑 → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
21 |
|
id |
⊢ ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
22 |
21
|
eqcomd |
⊢ ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ → +∞ = ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → +∞ = ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
24 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ∈ dom vol ) |
25 |
|
ssiun2 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
27 |
|
volss |
⊢ ( ( ( 𝐸 ‘ 𝑛 ) ∈ dom vol ∧ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ∈ dom vol ∧ ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
28 |
13 24 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
29 |
28
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
30 |
23 29
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → +∞ ≤ ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
31 |
20 30
|
xrgepnfd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
32 |
31
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ → ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) ) ) |
33 |
5 9 32
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) ) |
34 |
33
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
35 |
|
nfre1 |
⊢ Ⅎ 𝑛 ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ |
36 |
5 35
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
37 |
|
nnex |
⊢ ℕ ∈ V |
38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ℕ ∈ V ) |
39 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
40 |
39 13
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
41 |
40
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
43 |
36 38 41 42
|
sge0pnfmpt |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) |
44 |
34 43
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
45 |
|
ralnex |
⊢ ( ∀ 𝑛 ∈ ℕ ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ↔ ¬ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
46 |
45
|
biimpri |
⊢ ( ¬ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ → ∀ 𝑛 ∈ ℕ ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ∀ 𝑛 ∈ ℕ ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
48 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
49 |
21
|
necon3bi |
⊢ ( ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ≠ +∞ ) |
50 |
49
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ≠ +∞ ) |
51 |
|
ge0xrre |
⊢ ( ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ≠ +∞ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
52 |
48 50 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
53 |
52
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ) |
54 |
|
renepnf |
⊢ ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ≠ +∞ ) |
55 |
54
|
neneqd |
⊢ ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ → ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
56 |
55
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ → ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) ) |
57 |
53 56
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ↔ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ) |
58 |
57
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℕ ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( ∀ 𝑛 ∈ ℕ ¬ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ) |
60 |
47 59
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
61 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ |
62 |
5 61
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
63 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) ∈ dom vol ) |
64 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
65 |
64
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
66 |
63 65
|
jca |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ) |
67 |
66
|
ex |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) → ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ) ) |
68 |
62 67
|
ralrimi |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ) |
69 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) → Disj 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
70 |
1 2
|
voliun |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑛 ) ∈ dom vol ∧ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
71 |
68 69 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
72 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) → 1 ∈ ℤ ) |
73 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
74 |
|
nfv |
⊢ Ⅎ 𝑛 𝑚 ∈ ℕ |
75 |
62 74
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) |
76 |
|
nfv |
⊢ Ⅎ 𝑛 ( vol ‘ ( 𝐸 ‘ 𝑚 ) ) ∈ ( 0 [,) +∞ ) |
77 |
75 76
|
nfim |
⊢ Ⅎ 𝑛 ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ) |
78 |
|
eleq1w |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ ℕ ↔ 𝑚 ∈ ℕ ) ) |
79 |
78
|
anbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) ↔ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) ) ) |
80 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = ( vol ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
81 |
80
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ↔ ( vol ‘ ( 𝐸 ‘ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ) ) |
82 |
79 81
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ) ↔ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
83 |
|
0xr |
⊢ 0 ∈ ℝ* |
84 |
83
|
a1i |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℝ* ) |
85 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
86 |
85
|
a1i |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → +∞ ∈ ℝ* ) |
87 |
65
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
88 |
|
volge0 |
⊢ ( ( 𝐸 ‘ 𝑛 ) ∈ dom vol → 0 ≤ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
89 |
13 88
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
90 |
89
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
91 |
65
|
ltpnfd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) < +∞ ) |
92 |
84 86 87 90 91
|
elicod |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ) |
93 |
77 82 92
|
chvarfv |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝐸 ‘ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ) |
94 |
80
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
95 |
93 94
|
fmptd |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
96 |
|
seqeq3 |
⊢ ( 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
97 |
2 96
|
ax-mp |
⊢ seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
98 |
1 97
|
eqtri |
⊢ 𝑆 = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
99 |
72 73 95 98
|
sge0seq |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
100 |
71 99
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
101 |
60 100
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑛 ∈ ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) = +∞ ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
102 |
44 101
|
pm2.61dan |
⊢ ( 𝜑 → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |