| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliunsge0lem.s | ⊢ 𝑆  =  seq 1 (  +  ,  𝐺 ) | 
						
							| 2 |  | voliunsge0lem.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 3 |  | voliunsge0lem.e | ⊢ ( 𝜑  →  𝐸 : ℕ ⟶ dom  vol ) | 
						
							| 4 |  | voliunsge0lem.d | ⊢ ( 𝜑  →  Disj  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑛 vol | 
						
							| 7 |  | nfiu1 | ⊢ Ⅎ 𝑛 ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) | 
						
							| 8 | 6 7 | nffv | ⊢ Ⅎ 𝑛 ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 9 | 8 | nfeq1 | ⊢ Ⅎ 𝑛 ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  +∞ | 
						
							| 10 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 11 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 13 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐸 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 15 |  | iunmbl | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 )  ∈  dom  vol  →  ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 17 | 12 16 | ffvelcdmd | ⊢ ( 𝜑  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 18 | 10 17 | sselid | ⊢ ( 𝜑  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 20 | 19 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 21 |  | id | ⊢ ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  →  +∞  =  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  +∞  =  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 24 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 25 |  | ssiun2 | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 27 |  | volss | ⊢ ( ( ( 𝐸 ‘ 𝑛 )  ∈  dom  vol  ∧  ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 )  ∈  dom  vol  ∧  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 28 | 13 24 26 27 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 29 | 28 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 30 | 23 29 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  +∞  ≤  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 31 | 20 30 | xrgepnfd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 32 | 31 | 3exp | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  →  ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) ) ) | 
						
							| 33 | 5 9 32 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 35 |  | nfre1 | ⊢ Ⅎ 𝑛 ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ | 
						
							| 36 | 5 35 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 37 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 38 | 37 | a1i | ⊢ ( ( 𝜑  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ℕ  ∈  V ) | 
						
							| 39 | 11 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 40 | 39 13 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 41 | 40 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝜑  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 43 | 36 38 41 42 | sge0pnfmpt | ⊢ ( ( 𝜑  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  +∞ ) | 
						
							| 44 | 34 43 | eqtr4d | ⊢ ( ( 𝜑  ∧  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 45 |  | ralnex | ⊢ ( ∀ 𝑛  ∈  ℕ ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  ↔  ¬  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 46 | 45 | biimpri | ⊢ ( ¬  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  →  ∀ 𝑛  ∈  ℕ ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ∀ 𝑛  ∈  ℕ ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 48 | 40 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 49 | 21 | necon3bi | ⊢ ( ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ≠  +∞ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ≠  +∞ ) | 
						
							| 51 |  | ge0xrre | ⊢ ( ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,] +∞ )  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ≠  +∞ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 52 | 48 50 51 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) ) | 
						
							| 54 |  | renepnf | ⊢ ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ≠  +∞ ) | 
						
							| 55 | 54 | neneqd | ⊢ ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ  →  ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ  →  ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) ) | 
						
							| 57 | 53 56 | impbid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  ↔  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) ) | 
						
							| 58 | 57 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ℕ ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  ↔  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( ∀ 𝑛  ∈  ℕ ¬  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞  ↔  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) ) | 
						
							| 60 | 47 59 | mpbid | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 61 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ | 
						
							| 62 | 5 61 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 63 | 13 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( 𝐸 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 64 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 65 | 64 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 66 | 63 65 | jca | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐸 ‘ 𝑛 )  ∈  dom  vol  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) ) | 
						
							| 67 | 66 | ex | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  →  ( ( 𝐸 ‘ 𝑛 )  ∈  dom  vol  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) ) ) | 
						
							| 68 | 62 67 | ralrimi | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  →  ∀ 𝑛  ∈  ℕ ( ( 𝐸 ‘ 𝑛 )  ∈  dom  vol  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) ) | 
						
							| 69 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  →  Disj  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 70 | 1 2 | voliun | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( ( 𝐸 ‘ 𝑛 )  ∈  dom  vol  ∧  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 71 | 68 69 70 | syl2anc | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 72 |  | 1zzd | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  →  1  ∈  ℤ ) | 
						
							| 73 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 74 |  | nfv | ⊢ Ⅎ 𝑛 𝑚  ∈  ℕ | 
						
							| 75 | 62 74 | nfan | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑚  ∈  ℕ ) | 
						
							| 76 |  | nfv | ⊢ Ⅎ 𝑛 ( vol ‘ ( 𝐸 ‘ 𝑚 ) )  ∈  ( 0 [,) +∞ ) | 
						
							| 77 | 75 76 | nfim | ⊢ Ⅎ 𝑛 ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑚 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 78 |  | eleq1w | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ∈  ℕ  ↔  𝑚  ∈  ℕ ) ) | 
						
							| 79 | 78 | anbi2d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  ↔  ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑚  ∈  ℕ ) ) ) | 
						
							| 80 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑚  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( vol ‘ ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 81 | 80 | eleq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,) +∞ )  ↔  ( vol ‘ ( 𝐸 ‘ 𝑚 ) )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 82 | 79 81 | imbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,) +∞ ) )  ↔  ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑚 ) )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 83 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 84 | 83 | a1i | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  0  ∈  ℝ* ) | 
						
							| 85 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 86 | 85 | a1i | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  +∞  ∈  ℝ* ) | 
						
							| 87 | 65 | rexrd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 88 |  | volge0 | ⊢ ( ( 𝐸 ‘ 𝑛 )  ∈  dom  vol  →  0  ≤  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 89 | 13 88 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 90 | 89 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 91 | 65 | ltpnfd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  <  +∞ ) | 
						
							| 92 | 84 86 87 90 91 | elicod | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 93 | 77 82 92 | chvarfv | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  ∧  𝑚  ∈  ℕ )  →  ( vol ‘ ( 𝐸 ‘ 𝑚 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 94 | 80 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 95 | 93 94 | fmptd | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  →  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 96 |  | seqeq3 | ⊢ ( 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) )  →  seq 1 (  +  ,  𝐺 )  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 97 | 2 96 | ax-mp | ⊢ seq 1 (  +  ,  𝐺 )  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 98 | 1 97 | eqtri | ⊢ 𝑆  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 99 | 72 73 95 98 | sge0seq | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 100 | 71 99 | eqtr4d | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 101 | 60 100 | syldan | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑛  ∈  ℕ ( vol ‘ ( 𝐸 ‘ 𝑛 ) )  =  +∞ )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 102 | 44 101 | pm2.61dan | ⊢ ( 𝜑  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝐸 ‘ 𝑛 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |