Metamath Proof Explorer


Theorem voliunsge0lem

Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses voliunsge0lem.s S = seq 1 + G
voliunsge0lem.g G = n vol E n
voliunsge0lem.e φ E : dom vol
voliunsge0lem.d φ Disj n E n
Assertion voliunsge0lem φ vol n E n = sum^ n vol E n

Proof

Step Hyp Ref Expression
1 voliunsge0lem.s S = seq 1 + G
2 voliunsge0lem.g G = n vol E n
3 voliunsge0lem.e φ E : dom vol
4 voliunsge0lem.d φ Disj n E n
5 nfv n φ
6 nfcv _ n vol
7 nfiu1 _ n n E n
8 6 7 nffv _ n vol n E n
9 8 nfeq1 n vol n E n = +∞
10 iccssxr 0 +∞ *
11 volf vol : dom vol 0 +∞
12 11 a1i φ vol : dom vol 0 +∞
13 3 ffvelrnda φ n E n dom vol
14 13 ralrimiva φ n E n dom vol
15 iunmbl n E n dom vol n E n dom vol
16 14 15 syl φ n E n dom vol
17 12 16 ffvelrnd φ vol n E n 0 +∞
18 10 17 sselid φ vol n E n *
19 18 adantr φ n vol n E n *
20 19 3adant3 φ n vol E n = +∞ vol n E n *
21 id vol E n = +∞ vol E n = +∞
22 21 eqcomd vol E n = +∞ +∞ = vol E n
23 22 3ad2ant3 φ n vol E n = +∞ +∞ = vol E n
24 16 adantr φ n n E n dom vol
25 ssiun2 n E n n E n
26 25 adantl φ n E n n E n
27 volss E n dom vol n E n dom vol E n n E n vol E n vol n E n
28 13 24 26 27 syl3anc φ n vol E n vol n E n
29 28 3adant3 φ n vol E n = +∞ vol E n vol n E n
30 23 29 eqbrtrd φ n vol E n = +∞ +∞ vol n E n
31 20 30 xrgepnfd φ n vol E n = +∞ vol n E n = +∞
32 31 3exp φ n vol E n = +∞ vol n E n = +∞
33 5 9 32 rexlimd φ n vol E n = +∞ vol n E n = +∞
34 33 imp φ n vol E n = +∞ vol n E n = +∞
35 nfre1 n n vol E n = +∞
36 5 35 nfan n φ n vol E n = +∞
37 nnex V
38 37 a1i φ n vol E n = +∞ V
39 11 a1i φ n vol : dom vol 0 +∞
40 39 13 ffvelrnd φ n vol E n 0 +∞
41 40 adantlr φ n vol E n = +∞ n vol E n 0 +∞
42 simpr φ n vol E n = +∞ n vol E n = +∞
43 36 38 41 42 sge0pnfmpt φ n vol E n = +∞ sum^ n vol E n = +∞
44 34 43 eqtr4d φ n vol E n = +∞ vol n E n = sum^ n vol E n
45 ralnex n ¬ vol E n = +∞ ¬ n vol E n = +∞
46 45 biimpri ¬ n vol E n = +∞ n ¬ vol E n = +∞
47 46 adantl φ ¬ n vol E n = +∞ n ¬ vol E n = +∞
48 40 adantr φ n ¬ vol E n = +∞ vol E n 0 +∞
49 21 necon3bi ¬ vol E n = +∞ vol E n +∞
50 49 adantl φ n ¬ vol E n = +∞ vol E n +∞
51 ge0xrre vol E n 0 +∞ vol E n +∞ vol E n
52 48 50 51 syl2anc φ n ¬ vol E n = +∞ vol E n
53 52 ex φ n ¬ vol E n = +∞ vol E n
54 renepnf vol E n vol E n +∞
55 54 neneqd vol E n ¬ vol E n = +∞
56 55 a1i φ n vol E n ¬ vol E n = +∞
57 53 56 impbid φ n ¬ vol E n = +∞ vol E n
58 57 ralbidva φ n ¬ vol E n = +∞ n vol E n
59 58 adantr φ ¬ n vol E n = +∞ n ¬ vol E n = +∞ n vol E n
60 47 59 mpbid φ ¬ n vol E n = +∞ n vol E n
61 nfra1 n n vol E n
62 5 61 nfan n φ n vol E n
63 13 adantlr φ n vol E n n E n dom vol
64 rspa n vol E n n vol E n
65 64 adantll φ n vol E n n vol E n
66 63 65 jca φ n vol E n n E n dom vol vol E n
67 66 ex φ n vol E n n E n dom vol vol E n
68 62 67 ralrimi φ n vol E n n E n dom vol vol E n
69 4 adantr φ n vol E n Disj n E n
70 1 2 voliun n E n dom vol vol E n Disj n E n vol n E n = sup ran S * <
71 68 69 70 syl2anc φ n vol E n vol n E n = sup ran S * <
72 1zzd φ n vol E n 1
73 nnuz = 1
74 nfv n m
75 62 74 nfan n φ n vol E n m
76 nfv n vol E m 0 +∞
77 75 76 nfim n φ n vol E n m vol E m 0 +∞
78 eleq1w n = m n m
79 78 anbi2d n = m φ n vol E n n φ n vol E n m
80 2fveq3 n = m vol E n = vol E m
81 80 eleq1d n = m vol E n 0 +∞ vol E m 0 +∞
82 79 81 imbi12d n = m φ n vol E n n vol E n 0 +∞ φ n vol E n m vol E m 0 +∞
83 0xr 0 *
84 83 a1i φ n vol E n n 0 *
85 pnfxr +∞ *
86 85 a1i φ n vol E n n +∞ *
87 65 rexrd φ n vol E n n vol E n *
88 volge0 E n dom vol 0 vol E n
89 13 88 syl φ n 0 vol E n
90 89 adantlr φ n vol E n n 0 vol E n
91 65 ltpnfd φ n vol E n n vol E n < +∞
92 84 86 87 90 91 elicod φ n vol E n n vol E n 0 +∞
93 77 82 92 chvarfv φ n vol E n m vol E m 0 +∞
94 80 cbvmptv n vol E n = m vol E m
95 93 94 fmptd φ n vol E n n vol E n : 0 +∞
96 seqeq3 G = n vol E n seq 1 + G = seq 1 + n vol E n
97 2 96 ax-mp seq 1 + G = seq 1 + n vol E n
98 1 97 eqtri S = seq 1 + n vol E n
99 72 73 95 98 sge0seq φ n vol E n sum^ n vol E n = sup ran S * <
100 71 99 eqtr4d φ n vol E n vol n E n = sum^ n vol E n
101 60 100 syldan φ ¬ n vol E n = +∞ vol n E n = sum^ n vol E n
102 44 101 pm2.61dan φ vol n E n = sum^ n vol E n