Metamath Proof Explorer


Theorem volf

Description: The domain and codomain of the Lebesgue measure function. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Assertion volf vol:domvol0+∞

Proof

Step Hyp Ref Expression
1 ovolf vol*:𝒫0+∞
2 ffun vol*:𝒫0+∞Funvol*
3 funres Funvol*Funvol*domvol
4 1 2 3 mp2b Funvol*domvol
5 volres vol=vol*domvol
6 5 funeqi FunvolFunvol*domvol
7 4 6 mpbir Funvol
8 resss vol*domvolvol*
9 5 8 eqsstri volvol*
10 fssxp vol*:𝒫0+∞vol*𝒫×0+∞
11 1 10 ax-mp vol*𝒫×0+∞
12 9 11 sstri vol𝒫×0+∞
13 7 12 pm3.2i Funvolvol𝒫×0+∞
14 funssxp Funvolvol𝒫×0+∞vol:domvol0+∞domvol𝒫
15 13 14 mpbi vol:domvol0+∞domvol𝒫
16 15 simpli vol:domvol0+∞