Metamath Proof Explorer


Theorem volmea

Description: The Lebeasgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volmea
|- ( ph -> vol e. Meas )

Proof

Step Hyp Ref Expression
1 dmvolsal
 |-  dom vol e. SAlg
2 1 a1i
 |-  ( ph -> dom vol e. SAlg )
3 volf
 |-  vol : dom vol --> ( 0 [,] +oo )
4 3 a1i
 |-  ( ph -> vol : dom vol --> ( 0 [,] +oo ) )
5 vol0
 |-  ( vol ` (/) ) = 0
6 5 a1i
 |-  ( ph -> ( vol ` (/) ) = 0 )
7 simp1
 |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> ph )
8 simp2
 |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> e : NN --> dom vol )
9 fveq2
 |-  ( m = n -> ( e ` m ) = ( e ` n ) )
10 9 cbvdisjv
 |-  ( Disj_ m e. NN ( e ` m ) <-> Disj_ n e. NN ( e ` n ) )
11 10 biimpri
 |-  ( Disj_ n e. NN ( e ` n ) -> Disj_ m e. NN ( e ` m ) )
12 11 3ad2ant3
 |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> Disj_ m e. NN ( e ` m ) )
13 simp2
 |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ m e. NN ( e ` m ) ) -> e : NN --> dom vol )
14 10 biimpi
 |-  ( Disj_ m e. NN ( e ` m ) -> Disj_ n e. NN ( e ` n ) )
15 14 3ad2ant3
 |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ m e. NN ( e ` m ) ) -> Disj_ n e. NN ( e ` n ) )
16 13 15 voliunsge0
 |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ m e. NN ( e ` m ) ) -> ( vol ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( e ` n ) ) ) ) )
17 7 8 12 16 syl3anc
 |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> ( vol ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( e ` n ) ) ) ) )
18 2 4 6 17 ismeannd
 |-  ( ph -> vol e. Meas )