| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmvolsal |
|- dom vol e. SAlg |
| 2 |
1
|
a1i |
|- ( ph -> dom vol e. SAlg ) |
| 3 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
| 4 |
3
|
a1i |
|- ( ph -> vol : dom vol --> ( 0 [,] +oo ) ) |
| 5 |
|
vol0 |
|- ( vol ` (/) ) = 0 |
| 6 |
5
|
a1i |
|- ( ph -> ( vol ` (/) ) = 0 ) |
| 7 |
|
simp1 |
|- ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> ph ) |
| 8 |
|
simp2 |
|- ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> e : NN --> dom vol ) |
| 9 |
|
fveq2 |
|- ( m = n -> ( e ` m ) = ( e ` n ) ) |
| 10 |
9
|
cbvdisjv |
|- ( Disj_ m e. NN ( e ` m ) <-> Disj_ n e. NN ( e ` n ) ) |
| 11 |
10
|
biimpri |
|- ( Disj_ n e. NN ( e ` n ) -> Disj_ m e. NN ( e ` m ) ) |
| 12 |
11
|
3ad2ant3 |
|- ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> Disj_ m e. NN ( e ` m ) ) |
| 13 |
|
simp2 |
|- ( ( ph /\ e : NN --> dom vol /\ Disj_ m e. NN ( e ` m ) ) -> e : NN --> dom vol ) |
| 14 |
10
|
biimpi |
|- ( Disj_ m e. NN ( e ` m ) -> Disj_ n e. NN ( e ` n ) ) |
| 15 |
14
|
3ad2ant3 |
|- ( ( ph /\ e : NN --> dom vol /\ Disj_ m e. NN ( e ` m ) ) -> Disj_ n e. NN ( e ` n ) ) |
| 16 |
13 15
|
voliunsge0 |
|- ( ( ph /\ e : NN --> dom vol /\ Disj_ m e. NN ( e ` m ) ) -> ( vol ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( e ` n ) ) ) ) ) |
| 17 |
7 8 12 16
|
syl3anc |
|- ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> ( vol ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( e ` n ) ) ) ) ) |
| 18 |
2 4 6 17
|
ismeannd |
|- ( ph -> vol e. Meas ) |