| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmvolsal |  |-  dom vol e. SAlg | 
						
							| 2 | 1 | a1i |  |-  ( ph -> dom vol e. SAlg ) | 
						
							| 3 |  | volf |  |-  vol : dom vol --> ( 0 [,] +oo ) | 
						
							| 4 | 3 | a1i |  |-  ( ph -> vol : dom vol --> ( 0 [,] +oo ) ) | 
						
							| 5 |  | vol0 |  |-  ( vol ` (/) ) = 0 | 
						
							| 6 | 5 | a1i |  |-  ( ph -> ( vol ` (/) ) = 0 ) | 
						
							| 7 |  | simp1 |  |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> ph ) | 
						
							| 8 |  | simp2 |  |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> e : NN --> dom vol ) | 
						
							| 9 |  | fveq2 |  |-  ( m = n -> ( e ` m ) = ( e ` n ) ) | 
						
							| 10 | 9 | cbvdisjv |  |-  ( Disj_ m e. NN ( e ` m ) <-> Disj_ n e. NN ( e ` n ) ) | 
						
							| 11 | 10 | biimpri |  |-  ( Disj_ n e. NN ( e ` n ) -> Disj_ m e. NN ( e ` m ) ) | 
						
							| 12 | 11 | 3ad2ant3 |  |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> Disj_ m e. NN ( e ` m ) ) | 
						
							| 13 |  | simp2 |  |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ m e. NN ( e ` m ) ) -> e : NN --> dom vol ) | 
						
							| 14 | 10 | biimpi |  |-  ( Disj_ m e. NN ( e ` m ) -> Disj_ n e. NN ( e ` n ) ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ m e. NN ( e ` m ) ) -> Disj_ n e. NN ( e ` n ) ) | 
						
							| 16 | 13 15 | voliunsge0 |  |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ m e. NN ( e ` m ) ) -> ( vol ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( e ` n ) ) ) ) ) | 
						
							| 17 | 7 8 12 16 | syl3anc |  |-  ( ( ph /\ e : NN --> dom vol /\ Disj_ n e. NN ( e ` n ) ) -> ( vol ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( e ` n ) ) ) ) ) | 
						
							| 18 | 2 4 6 17 | ismeannd |  |-  ( ph -> vol e. Meas ) |