Description: If the measure of a measurable set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | meage0.m | |- ( ph -> M e. Meas ) |
|
meage0.a | |- ( ph -> A e. dom M ) |
||
Assertion | meage0 | |- ( ph -> 0 <_ ( M ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meage0.m | |- ( ph -> M e. Meas ) |
|
2 | meage0.a | |- ( ph -> A e. dom M ) |
|
3 | 0xr | |- 0 e. RR* |
|
4 | 3 | a1i | |- ( ph -> 0 e. RR* ) |
5 | pnfxr | |- +oo e. RR* |
|
6 | 5 | a1i | |- ( ph -> +oo e. RR* ) |
7 | eqid | |- dom M = dom M |
|
8 | 1 7 2 | meacl | |- ( ph -> ( M ` A ) e. ( 0 [,] +oo ) ) |
9 | iccgelb | |- ( ( 0 e. RR* /\ +oo e. RR* /\ ( M ` A ) e. ( 0 [,] +oo ) ) -> 0 <_ ( M ` A ) ) |
|
10 | 4 6 8 9 | syl3anc | |- ( ph -> 0 <_ ( M ` A ) ) |