Description: If the measure of a measurable set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meage0.m | |- ( ph -> M e. Meas ) | |
| meage0.a | |- ( ph -> A e. dom M ) | ||
| Assertion | meage0 | |- ( ph -> 0 <_ ( M ` A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | meage0.m | |- ( ph -> M e. Meas ) | |
| 2 | meage0.a | |- ( ph -> A e. dom M ) | |
| 3 | 0xr | |- 0 e. RR* | |
| 4 | 3 | a1i | |- ( ph -> 0 e. RR* ) | 
| 5 | pnfxr | |- +oo e. RR* | |
| 6 | 5 | a1i | |- ( ph -> +oo e. RR* ) | 
| 7 | eqid | |- dom M = dom M | |
| 8 | 1 7 2 | meacl | |- ( ph -> ( M ` A ) e. ( 0 [,] +oo ) ) | 
| 9 | iccgelb | |- ( ( 0 e. RR* /\ +oo e. RR* /\ ( M ` A ) e. ( 0 [,] +oo ) ) -> 0 <_ ( M ` A ) ) | |
| 10 | 4 6 8 9 | syl3anc | |- ( ph -> 0 <_ ( M ` A ) ) |