Metamath Proof Explorer


Theorem meage0

Description: If the measure of a measurable set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meage0.m
|- ( ph -> M e. Meas )
meage0.a
|- ( ph -> A e. dom M )
Assertion meage0
|- ( ph -> 0 <_ ( M ` A ) )

Proof

Step Hyp Ref Expression
1 meage0.m
 |-  ( ph -> M e. Meas )
2 meage0.a
 |-  ( ph -> A e. dom M )
3 0xr
 |-  0 e. RR*
4 3 a1i
 |-  ( ph -> 0 e. RR* )
5 pnfxr
 |-  +oo e. RR*
6 5 a1i
 |-  ( ph -> +oo e. RR* )
7 eqid
 |-  dom M = dom M
8 1 7 2 meacl
 |-  ( ph -> ( M ` A ) e. ( 0 [,] +oo ) )
9 iccgelb
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ ( M ` A ) e. ( 0 [,] +oo ) ) -> 0 <_ ( M ` A ) )
10 4 6 8 9 syl3anc
 |-  ( ph -> 0 <_ ( M ` A ) )