Metamath Proof Explorer


Theorem meadjunre

Description: The measure of the union of two disjoint sets, with finite measure, is the sum of the measures, Property 112C (a) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meadjunre.m
|- ( ph -> M e. Meas )
meadjunre.x
|- S = dom M
meadjunre.a
|- ( ph -> A e. S )
meadjunre.b
|- ( ph -> B e. S )
meadjunre.d
|- ( ph -> ( A i^i B ) = (/) )
meadjunre.r
|- ( ph -> ( M ` A ) e. RR )
meadjunre.f
|- ( ph -> ( M ` B ) e. RR )
Assertion meadjunre
|- ( ph -> ( M ` ( A u. B ) ) = ( ( M ` A ) + ( M ` B ) ) )

Proof

Step Hyp Ref Expression
1 meadjunre.m
 |-  ( ph -> M e. Meas )
2 meadjunre.x
 |-  S = dom M
3 meadjunre.a
 |-  ( ph -> A e. S )
4 meadjunre.b
 |-  ( ph -> B e. S )
5 meadjunre.d
 |-  ( ph -> ( A i^i B ) = (/) )
6 meadjunre.r
 |-  ( ph -> ( M ` A ) e. RR )
7 meadjunre.f
 |-  ( ph -> ( M ` B ) e. RR )
8 1 2 3 4 5 meadjun
 |-  ( ph -> ( M ` ( A u. B ) ) = ( ( M ` A ) +e ( M ` B ) ) )
9 6 7 rexaddd
 |-  ( ph -> ( ( M ` A ) +e ( M ` B ) ) = ( ( M ` A ) + ( M ` B ) ) )
10 8 9 eqtrd
 |-  ( ph -> ( M ` ( A u. B ) ) = ( ( M ` A ) + ( M ` B ) ) )