| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meassre.m |
|- ( ph -> M e. Meas ) |
| 2 |
|
meassre.a |
|- ( ph -> A e. dom M ) |
| 3 |
|
meassre.r |
|- ( ph -> ( M ` A ) e. RR ) |
| 4 |
|
meassre.s |
|- ( ph -> B C_ A ) |
| 5 |
|
meassre.b |
|- ( ph -> B e. dom M ) |
| 6 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 7 |
|
0xr |
|- 0 e. RR* |
| 8 |
7
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 9 |
|
pnfxr |
|- +oo e. RR* |
| 10 |
9
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 11 |
|
eqid |
|- dom M = dom M |
| 12 |
1 11 5
|
meaxrcl |
|- ( ph -> ( M ` B ) e. RR* ) |
| 13 |
1 5
|
meage0 |
|- ( ph -> 0 <_ ( M ` B ) ) |
| 14 |
3
|
rexrd |
|- ( ph -> ( M ` A ) e. RR* ) |
| 15 |
1 11 5 2 4
|
meassle |
|- ( ph -> ( M ` B ) <_ ( M ` A ) ) |
| 16 |
3
|
ltpnfd |
|- ( ph -> ( M ` A ) < +oo ) |
| 17 |
12 14 10 15 16
|
xrlelttrd |
|- ( ph -> ( M ` B ) < +oo ) |
| 18 |
8 10 12 13 17
|
elicod |
|- ( ph -> ( M ` B ) e. ( 0 [,) +oo ) ) |
| 19 |
6 18
|
sselid |
|- ( ph -> ( M ` B ) e. RR ) |