Step |
Hyp |
Ref |
Expression |
1 |
|
meassre.m |
|- ( ph -> M e. Meas ) |
2 |
|
meassre.a |
|- ( ph -> A e. dom M ) |
3 |
|
meassre.r |
|- ( ph -> ( M ` A ) e. RR ) |
4 |
|
meassre.s |
|- ( ph -> B C_ A ) |
5 |
|
meassre.b |
|- ( ph -> B e. dom M ) |
6 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
7 |
|
0xr |
|- 0 e. RR* |
8 |
7
|
a1i |
|- ( ph -> 0 e. RR* ) |
9 |
|
pnfxr |
|- +oo e. RR* |
10 |
9
|
a1i |
|- ( ph -> +oo e. RR* ) |
11 |
|
eqid |
|- dom M = dom M |
12 |
1 11 5
|
meaxrcl |
|- ( ph -> ( M ` B ) e. RR* ) |
13 |
1 5
|
meage0 |
|- ( ph -> 0 <_ ( M ` B ) ) |
14 |
3
|
rexrd |
|- ( ph -> ( M ` A ) e. RR* ) |
15 |
1 11 5 2 4
|
meassle |
|- ( ph -> ( M ` B ) <_ ( M ` A ) ) |
16 |
3
|
ltpnfd |
|- ( ph -> ( M ` A ) < +oo ) |
17 |
12 14 10 15 16
|
xrlelttrd |
|- ( ph -> ( M ` B ) < +oo ) |
18 |
8 10 12 13 17
|
elicod |
|- ( ph -> ( M ` B ) e. ( 0 [,) +oo ) ) |
19 |
6 18
|
sselid |
|- ( ph -> ( M ` B ) e. RR ) |