Metamath Proof Explorer


Theorem meassre

Description: If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meassre.m
|- ( ph -> M e. Meas )
meassre.a
|- ( ph -> A e. dom M )
meassre.r
|- ( ph -> ( M ` A ) e. RR )
meassre.s
|- ( ph -> B C_ A )
meassre.b
|- ( ph -> B e. dom M )
Assertion meassre
|- ( ph -> ( M ` B ) e. RR )

Proof

Step Hyp Ref Expression
1 meassre.m
 |-  ( ph -> M e. Meas )
2 meassre.a
 |-  ( ph -> A e. dom M )
3 meassre.r
 |-  ( ph -> ( M ` A ) e. RR )
4 meassre.s
 |-  ( ph -> B C_ A )
5 meassre.b
 |-  ( ph -> B e. dom M )
6 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
7 0xr
 |-  0 e. RR*
8 7 a1i
 |-  ( ph -> 0 e. RR* )
9 pnfxr
 |-  +oo e. RR*
10 9 a1i
 |-  ( ph -> +oo e. RR* )
11 eqid
 |-  dom M = dom M
12 1 11 5 meaxrcl
 |-  ( ph -> ( M ` B ) e. RR* )
13 1 5 meage0
 |-  ( ph -> 0 <_ ( M ` B ) )
14 3 rexrd
 |-  ( ph -> ( M ` A ) e. RR* )
15 1 11 5 2 4 meassle
 |-  ( ph -> ( M ` B ) <_ ( M ` A ) )
16 3 ltpnfd
 |-  ( ph -> ( M ` A ) < +oo )
17 12 14 10 15 16 xrlelttrd
 |-  ( ph -> ( M ` B ) < +oo )
18 8 10 12 13 17 elicod
 |-  ( ph -> ( M ` B ) e. ( 0 [,) +oo ) )
19 6 18 sselid
 |-  ( ph -> ( M ` B ) e. RR )