| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meassle.m |
|- ( ph -> M e. Meas ) |
| 2 |
|
meassle.x |
|- S = dom M |
| 3 |
|
meassle.a |
|- ( ph -> A e. S ) |
| 4 |
|
meassle.b |
|- ( ph -> B e. S ) |
| 5 |
|
meassle.ss |
|- ( ph -> A C_ B ) |
| 6 |
1 2 3
|
meaxrcl |
|- ( ph -> ( M ` A ) e. RR* ) |
| 7 |
1 2
|
dmmeasal |
|- ( ph -> S e. SAlg ) |
| 8 |
|
saldifcl2 |
|- ( ( S e. SAlg /\ B e. S /\ A e. S ) -> ( B \ A ) e. S ) |
| 9 |
7 4 3 8
|
syl3anc |
|- ( ph -> ( B \ A ) e. S ) |
| 10 |
1 2 9
|
meacl |
|- ( ph -> ( M ` ( B \ A ) ) e. ( 0 [,] +oo ) ) |
| 11 |
6 10
|
xadd0ge |
|- ( ph -> ( M ` A ) <_ ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) |
| 12 |
|
undif |
|- ( A C_ B <-> ( A u. ( B \ A ) ) = B ) |
| 13 |
12
|
biimpi |
|- ( A C_ B -> ( A u. ( B \ A ) ) = B ) |
| 14 |
5 13
|
syl |
|- ( ph -> ( A u. ( B \ A ) ) = B ) |
| 15 |
14
|
fveq2d |
|- ( ph -> ( M ` ( A u. ( B \ A ) ) ) = ( M ` B ) ) |
| 16 |
15
|
eqcomd |
|- ( ph -> ( M ` B ) = ( M ` ( A u. ( B \ A ) ) ) ) |
| 17 |
|
disjdif |
|- ( A i^i ( B \ A ) ) = (/) |
| 18 |
17
|
a1i |
|- ( ph -> ( A i^i ( B \ A ) ) = (/) ) |
| 19 |
1 2 3 9 18
|
meadjun |
|- ( ph -> ( M ` ( A u. ( B \ A ) ) ) = ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) |
| 20 |
16 19
|
eqtr2d |
|- ( ph -> ( ( M ` A ) +e ( M ` ( B \ A ) ) ) = ( M ` B ) ) |
| 21 |
11 20
|
breqtrd |
|- ( ph -> ( M ` A ) <_ ( M ` B ) ) |