Metamath Proof Explorer


Theorem meassle

Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meassle.m
|- ( ph -> M e. Meas )
meassle.x
|- S = dom M
meassle.a
|- ( ph -> A e. S )
meassle.b
|- ( ph -> B e. S )
meassle.ss
|- ( ph -> A C_ B )
Assertion meassle
|- ( ph -> ( M ` A ) <_ ( M ` B ) )

Proof

Step Hyp Ref Expression
1 meassle.m
 |-  ( ph -> M e. Meas )
2 meassle.x
 |-  S = dom M
3 meassle.a
 |-  ( ph -> A e. S )
4 meassle.b
 |-  ( ph -> B e. S )
5 meassle.ss
 |-  ( ph -> A C_ B )
6 1 2 3 meaxrcl
 |-  ( ph -> ( M ` A ) e. RR* )
7 1 2 dmmeasal
 |-  ( ph -> S e. SAlg )
8 saldifcl2
 |-  ( ( S e. SAlg /\ B e. S /\ A e. S ) -> ( B \ A ) e. S )
9 7 4 3 8 syl3anc
 |-  ( ph -> ( B \ A ) e. S )
10 1 2 9 meacl
 |-  ( ph -> ( M ` ( B \ A ) ) e. ( 0 [,] +oo ) )
11 6 10 xadd0ge
 |-  ( ph -> ( M ` A ) <_ ( ( M ` A ) +e ( M ` ( B \ A ) ) ) )
12 undif
 |-  ( A C_ B <-> ( A u. ( B \ A ) ) = B )
13 12 biimpi
 |-  ( A C_ B -> ( A u. ( B \ A ) ) = B )
14 5 13 syl
 |-  ( ph -> ( A u. ( B \ A ) ) = B )
15 14 fveq2d
 |-  ( ph -> ( M ` ( A u. ( B \ A ) ) ) = ( M ` B ) )
16 15 eqcomd
 |-  ( ph -> ( M ` B ) = ( M ` ( A u. ( B \ A ) ) ) )
17 disjdif
 |-  ( A i^i ( B \ A ) ) = (/)
18 17 a1i
 |-  ( ph -> ( A i^i ( B \ A ) ) = (/) )
19 1 2 3 9 18 meadjun
 |-  ( ph -> ( M ` ( A u. ( B \ A ) ) ) = ( ( M ` A ) +e ( M ` ( B \ A ) ) ) )
20 16 19 eqtr2d
 |-  ( ph -> ( ( M ` A ) +e ( M ` ( B \ A ) ) ) = ( M ` B ) )
21 11 20 breqtrd
 |-  ( ph -> ( M ` A ) <_ ( M ` B ) )