Metamath Proof Explorer


Theorem meassle

Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meassle.m ( 𝜑𝑀 ∈ Meas )
meassle.x 𝑆 = dom 𝑀
meassle.a ( 𝜑𝐴𝑆 )
meassle.b ( 𝜑𝐵𝑆 )
meassle.ss ( 𝜑𝐴𝐵 )
Assertion meassle ( 𝜑 → ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) )

Proof

Step Hyp Ref Expression
1 meassle.m ( 𝜑𝑀 ∈ Meas )
2 meassle.x 𝑆 = dom 𝑀
3 meassle.a ( 𝜑𝐴𝑆 )
4 meassle.b ( 𝜑𝐵𝑆 )
5 meassle.ss ( 𝜑𝐴𝐵 )
6 1 2 3 meaxrcl ( 𝜑 → ( 𝑀𝐴 ) ∈ ℝ* )
7 1 2 dmmeasal ( 𝜑𝑆 ∈ SAlg )
8 saldifcl2 ( ( 𝑆 ∈ SAlg ∧ 𝐵𝑆𝐴𝑆 ) → ( 𝐵𝐴 ) ∈ 𝑆 )
9 7 4 3 8 syl3anc ( 𝜑 → ( 𝐵𝐴 ) ∈ 𝑆 )
10 1 2 9 meacl ( 𝜑 → ( 𝑀 ‘ ( 𝐵𝐴 ) ) ∈ ( 0 [,] +∞ ) )
11 6 10 xadd0ge ( 𝜑 → ( 𝑀𝐴 ) ≤ ( ( 𝑀𝐴 ) +𝑒 ( 𝑀 ‘ ( 𝐵𝐴 ) ) ) )
12 undif ( 𝐴𝐵 ↔ ( 𝐴 ∪ ( 𝐵𝐴 ) ) = 𝐵 )
13 12 biimpi ( 𝐴𝐵 → ( 𝐴 ∪ ( 𝐵𝐴 ) ) = 𝐵 )
14 5 13 syl ( 𝜑 → ( 𝐴 ∪ ( 𝐵𝐴 ) ) = 𝐵 )
15 14 fveq2d ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ ( 𝐵𝐴 ) ) ) = ( 𝑀𝐵 ) )
16 15 eqcomd ( 𝜑 → ( 𝑀𝐵 ) = ( 𝑀 ‘ ( 𝐴 ∪ ( 𝐵𝐴 ) ) ) )
17 disjdif ( 𝐴 ∩ ( 𝐵𝐴 ) ) = ∅
18 17 a1i ( 𝜑 → ( 𝐴 ∩ ( 𝐵𝐴 ) ) = ∅ )
19 1 2 3 9 18 meadjun ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ ( 𝐵𝐴 ) ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀 ‘ ( 𝐵𝐴 ) ) ) )
20 16 19 eqtr2d ( 𝜑 → ( ( 𝑀𝐴 ) +𝑒 ( 𝑀 ‘ ( 𝐵𝐴 ) ) ) = ( 𝑀𝐵 ) )
21 11 20 breqtrd ( 𝜑 → ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) )