Step |
Hyp |
Ref |
Expression |
1 |
|
meassle.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
2 |
|
meassle.x |
⊢ 𝑆 = dom 𝑀 |
3 |
|
meassle.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
4 |
|
meassle.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
5 |
|
meassle.ss |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
6 |
1 2 3
|
meaxrcl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) |
7 |
1 2
|
dmmeasal |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
8 |
|
saldifcl2 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐵 ∖ 𝐴 ) ∈ 𝑆 ) |
9 |
7 4 3 8
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ∈ 𝑆 ) |
10 |
1 2 9
|
meacl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
11 |
6 10
|
xadd0ge |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
12 |
|
undif |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
13 |
12
|
biimpi |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝑀 ‘ 𝐵 ) ) |
16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) = ( 𝑀 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) ) |
17 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
18 |
17
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) |
19 |
1 2 3 9 18
|
meadjun |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
20 |
16 19
|
eqtr2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝑀 ‘ 𝐵 ) ) |
21 |
11 20
|
breqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝐵 ) ) |