Metamath Proof Explorer


Theorem meassle

Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meassle.m φMMeas
meassle.x S=domM
meassle.a φAS
meassle.b φBS
meassle.ss φAB
Assertion meassle φMAMB

Proof

Step Hyp Ref Expression
1 meassle.m φMMeas
2 meassle.x S=domM
3 meassle.a φAS
4 meassle.b φBS
5 meassle.ss φAB
6 1 2 3 meaxrcl φMA*
7 1 2 dmmeasal φSSAlg
8 saldifcl2 SSAlgBSASBAS
9 7 4 3 8 syl3anc φBAS
10 1 2 9 meacl φMBA0+∞
11 6 10 xadd0ge φMAMA+𝑒MBA
12 undif ABABA=B
13 12 biimpi ABABA=B
14 5 13 syl φABA=B
15 14 fveq2d φMABA=MB
16 15 eqcomd φMB=MABA
17 disjdif ABA=
18 17 a1i φABA=
19 1 2 3 9 18 meadjun φMABA=MA+𝑒MBA
20 16 19 eqtr2d φMA+𝑒MBA=MB
21 11 20 breqtrd φMAMB