Step |
Hyp |
Ref |
Expression |
1 |
|
meadjun.m |
|
2 |
|
meadjun.x |
|
3 |
|
meadjun.a |
|
4 |
|
meadjun.b |
|
5 |
|
meadjun.dj |
|
6 |
|
iccssxr |
|
7 |
1 2
|
meaf |
|
8 |
7 4
|
ffvelrnd |
|
9 |
6 8
|
sselid |
|
10 |
|
xaddid2 |
|
11 |
9 10
|
syl |
|
12 |
11
|
eqcomd |
|
13 |
12
|
adantr |
|
14 |
|
uneq1 |
|
15 |
|
0un |
|
16 |
15
|
a1i |
|
17 |
14 16
|
eqtrd |
|
18 |
17
|
fveq2d |
|
19 |
18
|
adantl |
|
20 |
|
fveq2 |
|
21 |
20
|
adantl |
|
22 |
1
|
mea0 |
|
23 |
22
|
adantr |
|
24 |
21 23
|
eqtrd |
|
25 |
24
|
oveq1d |
|
26 |
13 19 25
|
3eqtr4d |
|
27 |
|
simpl |
|
28 |
5
|
ad2antrr |
|
29 |
|
inidm |
|
30 |
29
|
eqcomi |
|
31 |
|
ineq2 |
|
32 |
30 31
|
eqtr2id |
|
33 |
32
|
adantl |
|
34 |
|
neqne |
|
35 |
34
|
adantr |
|
36 |
33 35
|
eqnetrd |
|
37 |
36
|
neneqd |
|
38 |
37
|
adantll |
|
39 |
28 38
|
pm2.65da |
|
40 |
39
|
neqned |
|
41 |
|
uniprg |
|
42 |
3 4 41
|
syl2anc |
|
43 |
42
|
eqcomd |
|
44 |
43
|
fveq2d |
|
45 |
44
|
adantr |
|
46 |
3 4
|
prssd |
|
47 |
|
prfi |
|
48 |
|
isfinite |
|
49 |
48
|
biimpi |
|
50 |
|
sdomdom |
|
51 |
49 50
|
syl |
|
52 |
47 51
|
ax-mp |
|
53 |
52
|
a1i |
|
54 |
|
disjxsn |
|
55 |
54
|
a1i |
|
56 |
|
preq1 |
|
57 |
|
dfsn2 |
|
58 |
57
|
eqcomi |
|
59 |
58
|
a1i |
|
60 |
56 59
|
eqtrd |
|
61 |
60
|
disjeq1d |
|
62 |
55 61
|
mpbird |
|
63 |
62
|
adantl |
|
64 |
|
simpl |
|
65 |
|
neqne |
|
66 |
65
|
adantl |
|
67 |
5
|
adantr |
|
68 |
3
|
adantr |
|
69 |
4
|
adantr |
|
70 |
|
simpr |
|
71 |
|
id |
|
72 |
|
id |
|
73 |
71 72
|
disjprg |
|
74 |
68 69 70 73
|
syl3anc |
|
75 |
67 74
|
mpbird |
|
76 |
64 66 75
|
syl2anc |
|
77 |
63 76
|
pm2.61dan |
|
78 |
1 2 46 53 77
|
meadjuni |
|
79 |
78
|
adantr |
|
80 |
7 3
|
ffvelrnd |
|
81 |
80
|
adantr |
|
82 |
8
|
adantr |
|
83 |
|
fveq2 |
|
84 |
|
fveq2 |
|
85 |
68 69 81 82 83 84 70
|
sge0pr |
|
86 |
7 46
|
fssresd |
|
87 |
86
|
feqmptd |
|
88 |
|
fvres |
|
89 |
88
|
mpteq2ia |
|
90 |
89
|
a1i |
|
91 |
87 90
|
eqtrd |
|
92 |
91
|
fveq2d |
|
93 |
92
|
adantr |
|
94 |
|
eqidd |
|
95 |
85 93 94
|
3eqtr4d |
|
96 |
45 79 95
|
3eqtrd |
|
97 |
27 40 96
|
syl2anc |
|
98 |
26 97
|
pm2.61dan |
|