Metamath Proof Explorer


Theorem meadjun

Description: The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meadjun.m φ M Meas
meadjun.x S = dom M
meadjun.a φ A S
meadjun.b φ B S
meadjun.dj φ A B =
Assertion meadjun φ M A B = M A + 𝑒 M B

Proof

Step Hyp Ref Expression
1 meadjun.m φ M Meas
2 meadjun.x S = dom M
3 meadjun.a φ A S
4 meadjun.b φ B S
5 meadjun.dj φ A B =
6 iccssxr 0 +∞ *
7 1 2 meaf φ M : S 0 +∞
8 7 4 ffvelrnd φ M B 0 +∞
9 6 8 sselid φ M B *
10 xaddid2 M B * 0 + 𝑒 M B = M B
11 9 10 syl φ 0 + 𝑒 M B = M B
12 11 eqcomd φ M B = 0 + 𝑒 M B
13 12 adantr φ A = M B = 0 + 𝑒 M B
14 uneq1 A = A B = B
15 0un B = B
16 15 a1i A = B = B
17 14 16 eqtrd A = A B = B
18 17 fveq2d A = M A B = M B
19 18 adantl φ A = M A B = M B
20 fveq2 A = M A = M
21 20 adantl φ A = M A = M
22 1 mea0 φ M = 0
23 22 adantr φ A = M = 0
24 21 23 eqtrd φ A = M A = 0
25 24 oveq1d φ A = M A + 𝑒 M B = 0 + 𝑒 M B
26 13 19 25 3eqtr4d φ A = M A B = M A + 𝑒 M B
27 simpl φ ¬ A = φ
28 5 ad2antrr φ ¬ A = A = B A B =
29 inidm A A = A
30 29 eqcomi A = A A
31 ineq2 A = B A A = A B
32 30 31 eqtr2id A = B A B = A
33 32 adantl ¬ A = A = B A B = A
34 neqne ¬ A = A
35 34 adantr ¬ A = A = B A
36 33 35 eqnetrd ¬ A = A = B A B
37 36 neneqd ¬ A = A = B ¬ A B =
38 37 adantll φ ¬ A = A = B ¬ A B =
39 28 38 pm2.65da φ ¬ A = ¬ A = B
40 39 neqned φ ¬ A = A B
41 uniprg A S B S A B = A B
42 3 4 41 syl2anc φ A B = A B
43 42 eqcomd φ A B = A B
44 43 fveq2d φ M A B = M A B
45 44 adantr φ A B M A B = M A B
46 3 4 prssd φ A B S
47 prfi A B Fin
48 isfinite A B Fin A B ω
49 48 biimpi A B Fin A B ω
50 sdomdom A B ω A B ω
51 49 50 syl A B Fin A B ω
52 47 51 ax-mp A B ω
53 52 a1i φ A B ω
54 disjxsn Disj x B x
55 54 a1i A = B Disj x B x
56 preq1 A = B A B = B B
57 dfsn2 B = B B
58 57 eqcomi B B = B
59 58 a1i A = B B B = B
60 56 59 eqtrd A = B A B = B
61 60 disjeq1d A = B Disj x A B x Disj x B x
62 55 61 mpbird A = B Disj x A B x
63 62 adantl φ A = B Disj x A B x
64 simpl φ ¬ A = B φ
65 neqne ¬ A = B A B
66 65 adantl φ ¬ A = B A B
67 5 adantr φ A B A B =
68 3 adantr φ A B A S
69 4 adantr φ A B B S
70 simpr φ A B A B
71 id x = A x = A
72 id x = B x = B
73 71 72 disjprg A S B S A B Disj x A B x A B =
74 68 69 70 73 syl3anc φ A B Disj x A B x A B =
75 67 74 mpbird φ A B Disj x A B x
76 64 66 75 syl2anc φ ¬ A = B Disj x A B x
77 63 76 pm2.61dan φ Disj x A B x
78 1 2 46 53 77 meadjuni φ M A B = sum^ M A B
79 78 adantr φ A B M A B = sum^ M A B
80 7 3 ffvelrnd φ M A 0 +∞
81 80 adantr φ A B M A 0 +∞
82 8 adantr φ A B M B 0 +∞
83 fveq2 x = A M x = M A
84 fveq2 x = B M x = M B
85 68 69 81 82 83 84 70 sge0pr φ A B sum^ x A B M x = M A + 𝑒 M B
86 7 46 fssresd φ M A B : A B 0 +∞
87 86 feqmptd φ M A B = x A B M A B x
88 fvres x A B M A B x = M x
89 88 mpteq2ia x A B M A B x = x A B M x
90 89 a1i φ x A B M A B x = x A B M x
91 87 90 eqtrd φ M A B = x A B M x
92 91 fveq2d φ sum^ M A B = sum^ x A B M x
93 92 adantr φ A B sum^ M A B = sum^ x A B M x
94 eqidd φ A B M A + 𝑒 M B = M A + 𝑒 M B
95 85 93 94 3eqtr4d φ A B sum^ M A B = M A + 𝑒 M B
96 45 79 95 3eqtrd φ A B M A B = M A + 𝑒 M B
97 27 40 96 syl2anc φ ¬ A = M A B = M A + 𝑒 M B
98 26 97 pm2.61dan φ M A B = M A + 𝑒 M B