| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meadjun.m |  |-  ( ph -> M e. Meas ) | 
						
							| 2 |  | meadjun.x |  |-  S = dom M | 
						
							| 3 |  | meadjun.a |  |-  ( ph -> A e. S ) | 
						
							| 4 |  | meadjun.b |  |-  ( ph -> B e. S ) | 
						
							| 5 |  | meadjun.dj |  |-  ( ph -> ( A i^i B ) = (/) ) | 
						
							| 6 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 7 | 1 2 | meaf |  |-  ( ph -> M : S --> ( 0 [,] +oo ) ) | 
						
							| 8 | 7 4 | ffvelcdmd |  |-  ( ph -> ( M ` B ) e. ( 0 [,] +oo ) ) | 
						
							| 9 | 6 8 | sselid |  |-  ( ph -> ( M ` B ) e. RR* ) | 
						
							| 10 |  | xaddlid |  |-  ( ( M ` B ) e. RR* -> ( 0 +e ( M ` B ) ) = ( M ` B ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> ( 0 +e ( M ` B ) ) = ( M ` B ) ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ph -> ( M ` B ) = ( 0 +e ( M ` B ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ A = (/) ) -> ( M ` B ) = ( 0 +e ( M ` B ) ) ) | 
						
							| 14 |  | uneq1 |  |-  ( A = (/) -> ( A u. B ) = ( (/) u. B ) ) | 
						
							| 15 |  | 0un |  |-  ( (/) u. B ) = B | 
						
							| 16 | 15 | a1i |  |-  ( A = (/) -> ( (/) u. B ) = B ) | 
						
							| 17 | 14 16 | eqtrd |  |-  ( A = (/) -> ( A u. B ) = B ) | 
						
							| 18 | 17 | fveq2d |  |-  ( A = (/) -> ( M ` ( A u. B ) ) = ( M ` B ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ A = (/) ) -> ( M ` ( A u. B ) ) = ( M ` B ) ) | 
						
							| 20 |  | fveq2 |  |-  ( A = (/) -> ( M ` A ) = ( M ` (/) ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ A = (/) ) -> ( M ` A ) = ( M ` (/) ) ) | 
						
							| 22 | 1 | mea0 |  |-  ( ph -> ( M ` (/) ) = 0 ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ A = (/) ) -> ( M ` (/) ) = 0 ) | 
						
							| 24 | 21 23 | eqtrd |  |-  ( ( ph /\ A = (/) ) -> ( M ` A ) = 0 ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ph /\ A = (/) ) -> ( ( M ` A ) +e ( M ` B ) ) = ( 0 +e ( M ` B ) ) ) | 
						
							| 26 | 13 19 25 | 3eqtr4d |  |-  ( ( ph /\ A = (/) ) -> ( M ` ( A u. B ) ) = ( ( M ` A ) +e ( M ` B ) ) ) | 
						
							| 27 |  | simpl |  |-  ( ( ph /\ -. A = (/) ) -> ph ) | 
						
							| 28 | 5 | ad2antrr |  |-  ( ( ( ph /\ -. A = (/) ) /\ A = B ) -> ( A i^i B ) = (/) ) | 
						
							| 29 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 30 | 29 | eqcomi |  |-  A = ( A i^i A ) | 
						
							| 31 |  | ineq2 |  |-  ( A = B -> ( A i^i A ) = ( A i^i B ) ) | 
						
							| 32 | 30 31 | eqtr2id |  |-  ( A = B -> ( A i^i B ) = A ) | 
						
							| 33 | 32 | adantl |  |-  ( ( -. A = (/) /\ A = B ) -> ( A i^i B ) = A ) | 
						
							| 34 |  | neqne |  |-  ( -. A = (/) -> A =/= (/) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( -. A = (/) /\ A = B ) -> A =/= (/) ) | 
						
							| 36 | 33 35 | eqnetrd |  |-  ( ( -. A = (/) /\ A = B ) -> ( A i^i B ) =/= (/) ) | 
						
							| 37 | 36 | neneqd |  |-  ( ( -. A = (/) /\ A = B ) -> -. ( A i^i B ) = (/) ) | 
						
							| 38 | 37 | adantll |  |-  ( ( ( ph /\ -. A = (/) ) /\ A = B ) -> -. ( A i^i B ) = (/) ) | 
						
							| 39 | 28 38 | pm2.65da |  |-  ( ( ph /\ -. A = (/) ) -> -. A = B ) | 
						
							| 40 | 39 | neqned |  |-  ( ( ph /\ -. A = (/) ) -> A =/= B ) | 
						
							| 41 |  | uniprg |  |-  ( ( A e. S /\ B e. S ) -> U. { A , B } = ( A u. B ) ) | 
						
							| 42 | 3 4 41 | syl2anc |  |-  ( ph -> U. { A , B } = ( A u. B ) ) | 
						
							| 43 | 42 | eqcomd |  |-  ( ph -> ( A u. B ) = U. { A , B } ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ph -> ( M ` ( A u. B ) ) = ( M ` U. { A , B } ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ A =/= B ) -> ( M ` ( A u. B ) ) = ( M ` U. { A , B } ) ) | 
						
							| 46 | 3 4 | prssd |  |-  ( ph -> { A , B } C_ S ) | 
						
							| 47 |  | prfi |  |-  { A , B } e. Fin | 
						
							| 48 |  | isfinite |  |-  ( { A , B } e. Fin <-> { A , B } ~< _om ) | 
						
							| 49 | 48 | biimpi |  |-  ( { A , B } e. Fin -> { A , B } ~< _om ) | 
						
							| 50 |  | sdomdom |  |-  ( { A , B } ~< _om -> { A , B } ~<_ _om ) | 
						
							| 51 | 49 50 | syl |  |-  ( { A , B } e. Fin -> { A , B } ~<_ _om ) | 
						
							| 52 | 47 51 | ax-mp |  |-  { A , B } ~<_ _om | 
						
							| 53 | 52 | a1i |  |-  ( ph -> { A , B } ~<_ _om ) | 
						
							| 54 |  | disjxsn |  |-  Disj_ x e. { B } x | 
						
							| 55 | 54 | a1i |  |-  ( A = B -> Disj_ x e. { B } x ) | 
						
							| 56 |  | preq1 |  |-  ( A = B -> { A , B } = { B , B } ) | 
						
							| 57 |  | dfsn2 |  |-  { B } = { B , B } | 
						
							| 58 | 57 | eqcomi |  |-  { B , B } = { B } | 
						
							| 59 | 58 | a1i |  |-  ( A = B -> { B , B } = { B } ) | 
						
							| 60 | 56 59 | eqtrd |  |-  ( A = B -> { A , B } = { B } ) | 
						
							| 61 | 60 | disjeq1d |  |-  ( A = B -> ( Disj_ x e. { A , B } x <-> Disj_ x e. { B } x ) ) | 
						
							| 62 | 55 61 | mpbird |  |-  ( A = B -> Disj_ x e. { A , B } x ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ph /\ A = B ) -> Disj_ x e. { A , B } x ) | 
						
							| 64 |  | simpl |  |-  ( ( ph /\ -. A = B ) -> ph ) | 
						
							| 65 |  | neqne |  |-  ( -. A = B -> A =/= B ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ph /\ -. A = B ) -> A =/= B ) | 
						
							| 67 | 5 | adantr |  |-  ( ( ph /\ A =/= B ) -> ( A i^i B ) = (/) ) | 
						
							| 68 | 3 | adantr |  |-  ( ( ph /\ A =/= B ) -> A e. S ) | 
						
							| 69 | 4 | adantr |  |-  ( ( ph /\ A =/= B ) -> B e. S ) | 
						
							| 70 |  | simpr |  |-  ( ( ph /\ A =/= B ) -> A =/= B ) | 
						
							| 71 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 72 |  | id |  |-  ( x = B -> x = B ) | 
						
							| 73 | 71 72 | disjprg |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( Disj_ x e. { A , B } x <-> ( A i^i B ) = (/) ) ) | 
						
							| 74 | 68 69 70 73 | syl3anc |  |-  ( ( ph /\ A =/= B ) -> ( Disj_ x e. { A , B } x <-> ( A i^i B ) = (/) ) ) | 
						
							| 75 | 67 74 | mpbird |  |-  ( ( ph /\ A =/= B ) -> Disj_ x e. { A , B } x ) | 
						
							| 76 | 64 66 75 | syl2anc |  |-  ( ( ph /\ -. A = B ) -> Disj_ x e. { A , B } x ) | 
						
							| 77 | 63 76 | pm2.61dan |  |-  ( ph -> Disj_ x e. { A , B } x ) | 
						
							| 78 | 1 2 46 53 77 | meadjuni |  |-  ( ph -> ( M ` U. { A , B } ) = ( sum^ ` ( M |` { A , B } ) ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ph /\ A =/= B ) -> ( M ` U. { A , B } ) = ( sum^ ` ( M |` { A , B } ) ) ) | 
						
							| 80 | 7 3 | ffvelcdmd |  |-  ( ph -> ( M ` A ) e. ( 0 [,] +oo ) ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ph /\ A =/= B ) -> ( M ` A ) e. ( 0 [,] +oo ) ) | 
						
							| 82 | 8 | adantr |  |-  ( ( ph /\ A =/= B ) -> ( M ` B ) e. ( 0 [,] +oo ) ) | 
						
							| 83 |  | fveq2 |  |-  ( x = A -> ( M ` x ) = ( M ` A ) ) | 
						
							| 84 |  | fveq2 |  |-  ( x = B -> ( M ` x ) = ( M ` B ) ) | 
						
							| 85 | 68 69 81 82 83 84 70 | sge0pr |  |-  ( ( ph /\ A =/= B ) -> ( sum^ ` ( x e. { A , B } |-> ( M ` x ) ) ) = ( ( M ` A ) +e ( M ` B ) ) ) | 
						
							| 86 | 7 46 | fssresd |  |-  ( ph -> ( M |` { A , B } ) : { A , B } --> ( 0 [,] +oo ) ) | 
						
							| 87 | 86 | feqmptd |  |-  ( ph -> ( M |` { A , B } ) = ( x e. { A , B } |-> ( ( M |` { A , B } ) ` x ) ) ) | 
						
							| 88 |  | fvres |  |-  ( x e. { A , B } -> ( ( M |` { A , B } ) ` x ) = ( M ` x ) ) | 
						
							| 89 | 88 | mpteq2ia |  |-  ( x e. { A , B } |-> ( ( M |` { A , B } ) ` x ) ) = ( x e. { A , B } |-> ( M ` x ) ) | 
						
							| 90 | 89 | a1i |  |-  ( ph -> ( x e. { A , B } |-> ( ( M |` { A , B } ) ` x ) ) = ( x e. { A , B } |-> ( M ` x ) ) ) | 
						
							| 91 | 87 90 | eqtrd |  |-  ( ph -> ( M |` { A , B } ) = ( x e. { A , B } |-> ( M ` x ) ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ph -> ( sum^ ` ( M |` { A , B } ) ) = ( sum^ ` ( x e. { A , B } |-> ( M ` x ) ) ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ph /\ A =/= B ) -> ( sum^ ` ( M |` { A , B } ) ) = ( sum^ ` ( x e. { A , B } |-> ( M ` x ) ) ) ) | 
						
							| 94 |  | eqidd |  |-  ( ( ph /\ A =/= B ) -> ( ( M ` A ) +e ( M ` B ) ) = ( ( M ` A ) +e ( M ` B ) ) ) | 
						
							| 95 | 85 93 94 | 3eqtr4d |  |-  ( ( ph /\ A =/= B ) -> ( sum^ ` ( M |` { A , B } ) ) = ( ( M ` A ) +e ( M ` B ) ) ) | 
						
							| 96 | 45 79 95 | 3eqtrd |  |-  ( ( ph /\ A =/= B ) -> ( M ` ( A u. B ) ) = ( ( M ` A ) +e ( M ` B ) ) ) | 
						
							| 97 | 27 40 96 | syl2anc |  |-  ( ( ph /\ -. A = (/) ) -> ( M ` ( A u. B ) ) = ( ( M ` A ) +e ( M ` B ) ) ) | 
						
							| 98 | 26 97 | pm2.61dan |  |-  ( ph -> ( M ` ( A u. B ) ) = ( ( M ` A ) +e ( M ` B ) ) ) |