| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meadjun.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meadjun.x | ⊢ 𝑆  =  dom  𝑀 | 
						
							| 3 |  | meadjun.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 4 |  | meadjun.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑆 ) | 
						
							| 5 |  | meadjun.dj | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 6 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 7 | 1 2 | meaf | ⊢ ( 𝜑  →  𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 8 | 7 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 9 | 6 8 | sselid | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 10 |  | xaddlid | ⊢ ( ( 𝑀 ‘ 𝐵 )  ∈  ℝ*  →  ( 0  +𝑒  ( 𝑀 ‘ 𝐵 ) )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  ( 0  +𝑒  ( 𝑀 ‘ 𝐵 ) )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  =  ( 0  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( 𝑀 ‘ 𝐵 )  =  ( 0  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 14 |  | uneq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ∪  𝐵 )  =  ( ∅  ∪  𝐵 ) ) | 
						
							| 15 |  | 0un | ⊢ ( ∅  ∪  𝐵 )  =  𝐵 | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐴  =  ∅  →  ( ∅  ∪  𝐵 )  =  𝐵 ) | 
						
							| 17 | 14 16 | eqtrd | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ∪  𝐵 )  =  𝐵 ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝐴  =  ∅  →  ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 22 | 1 | mea0 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 24 | 21 23 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( 𝑀 ‘ 𝐴 )  =  0 ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) )  =  ( 0  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 26 | 13 19 25 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 27 |  | simpl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  𝜑 ) | 
						
							| 28 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 29 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 30 | 29 | eqcomi | ⊢ 𝐴  =  ( 𝐴  ∩  𝐴 ) | 
						
							| 31 |  | ineq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∩  𝐴 )  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 32 | 30 31 | eqtr2id | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ¬  𝐴  =  ∅  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 34 |  | neqne | ⊢ ( ¬  𝐴  =  ∅  →  𝐴  ≠  ∅ ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ¬  𝐴  =  ∅  ∧  𝐴  =  𝐵 )  →  𝐴  ≠  ∅ ) | 
						
							| 36 | 33 35 | eqnetrd | ⊢ ( ( ¬  𝐴  =  ∅  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∩  𝐵 )  ≠  ∅ ) | 
						
							| 37 | 36 | neneqd | ⊢ ( ( ¬  𝐴  =  ∅  ∧  𝐴  =  𝐵 )  →  ¬  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 38 | 37 | adantll | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝐴  =  𝐵 )  →  ¬  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 39 | 28 38 | pm2.65da | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  ¬  𝐴  =  𝐵 ) | 
						
							| 40 | 39 | neqned | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  𝐴  ≠  𝐵 ) | 
						
							| 41 |  | uniprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 42 | 3 4 41 | syl2anc | ⊢ ( 𝜑  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 43 | 42 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴  ∪  𝐵 )  =  ∪  { 𝐴 ,  𝐵 } ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( 𝑀 ‘ ∪  { 𝐴 ,  𝐵 } ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( 𝑀 ‘ ∪  { 𝐴 ,  𝐵 } ) ) | 
						
							| 46 | 3 4 | prssd | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ⊆  𝑆 ) | 
						
							| 47 |  | prfi | ⊢ { 𝐴 ,  𝐵 }  ∈  Fin | 
						
							| 48 |  | isfinite | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  ↔  { 𝐴 ,  𝐵 }  ≺  ω ) | 
						
							| 49 | 48 | biimpi | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  →  { 𝐴 ,  𝐵 }  ≺  ω ) | 
						
							| 50 |  | sdomdom | ⊢ ( { 𝐴 ,  𝐵 }  ≺  ω  →  { 𝐴 ,  𝐵 }  ≼  ω ) | 
						
							| 51 | 49 50 | syl | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  →  { 𝐴 ,  𝐵 }  ≼  ω ) | 
						
							| 52 | 47 51 | ax-mp | ⊢ { 𝐴 ,  𝐵 }  ≼  ω | 
						
							| 53 | 52 | a1i | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ≼  ω ) | 
						
							| 54 |  | disjxsn | ⊢ Disj  𝑥  ∈  { 𝐵 } 𝑥 | 
						
							| 55 | 54 | a1i | ⊢ ( 𝐴  =  𝐵  →  Disj  𝑥  ∈  { 𝐵 } 𝑥 ) | 
						
							| 56 |  | preq1 | ⊢ ( 𝐴  =  𝐵  →  { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐵 } ) | 
						
							| 57 |  | dfsn2 | ⊢ { 𝐵 }  =  { 𝐵 ,  𝐵 } | 
						
							| 58 | 57 | eqcomi | ⊢ { 𝐵 ,  𝐵 }  =  { 𝐵 } | 
						
							| 59 | 58 | a1i | ⊢ ( 𝐴  =  𝐵  →  { 𝐵 ,  𝐵 }  =  { 𝐵 } ) | 
						
							| 60 | 56 59 | eqtrd | ⊢ ( 𝐴  =  𝐵  →  { 𝐴 ,  𝐵 }  =  { 𝐵 } ) | 
						
							| 61 | 60 | disjeq1d | ⊢ ( 𝐴  =  𝐵  →  ( Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝑥  ↔  Disj  𝑥  ∈  { 𝐵 } 𝑥 ) ) | 
						
							| 62 | 55 61 | mpbird | ⊢ ( 𝐴  =  𝐵  →  Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝑥 ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝑥 ) | 
						
							| 64 |  | simpl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝜑 ) | 
						
							| 65 |  | neqne | ⊢ ( ¬  𝐴  =  𝐵  →  𝐴  ≠  𝐵 ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 67 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 68 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝑆 ) | 
						
							| 69 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝑆 ) | 
						
							| 70 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 71 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 72 |  | id | ⊢ ( 𝑥  =  𝐵  →  𝑥  =  𝐵 ) | 
						
							| 73 | 71 72 | disjprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝑥  ↔  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 74 | 68 69 70 73 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝑥  ↔  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 75 | 67 74 | mpbird | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝑥 ) | 
						
							| 76 | 64 66 75 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝑥 ) | 
						
							| 77 | 63 76 | pm2.61dan | ⊢ ( 𝜑  →  Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝑥 ) | 
						
							| 78 | 1 2 46 53 77 | meadjuni | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  { 𝐴 ,  𝐵 } )  =  ( Σ^ ‘ ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑀 ‘ ∪  { 𝐴 ,  𝐵 } )  =  ( Σ^ ‘ ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 80 | 7 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑀 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 82 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑀 ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 83 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 84 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 85 | 68 69 81 82 83 84 70 | sge0pr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( Σ^ ‘ ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( 𝑀 ‘ 𝑥 ) ) )  =  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 86 | 7 46 | fssresd | ⊢ ( 𝜑  →  ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) : { 𝐴 ,  𝐵 } ⟶ ( 0 [,] +∞ ) ) | 
						
							| 87 | 86 | feqmptd | ⊢ ( 𝜑  →  ( 𝑀  ↾  { 𝐴 ,  𝐵 } )  =  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) ‘ 𝑥 ) ) ) | 
						
							| 88 |  | fvres | ⊢ ( 𝑥  ∈  { 𝐴 ,  𝐵 }  →  ( ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 89 | 88 | mpteq2ia | ⊢ ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 90 | 89 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 91 | 87 90 | eqtrd | ⊢ ( 𝜑  →  ( 𝑀  ↾  { 𝐴 ,  𝐵 } )  =  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) )  =  ( Σ^ ‘ ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( 𝑀 ‘ 𝑥 ) ) ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( Σ^ ‘ ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) )  =  ( Σ^ ‘ ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( 𝑀 ‘ 𝑥 ) ) ) ) | 
						
							| 94 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) )  =  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 95 | 85 93 94 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( Σ^ ‘ ( 𝑀  ↾  { 𝐴 ,  𝐵 } ) )  =  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 96 | 45 79 95 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐵 )  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 97 | 27 40 96 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 98 | 26 97 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) |