Metamath Proof Explorer


Theorem meadjun

Description: The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meadjun.m ( 𝜑𝑀 ∈ Meas )
meadjun.x 𝑆 = dom 𝑀
meadjun.a ( 𝜑𝐴𝑆 )
meadjun.b ( 𝜑𝐵𝑆 )
meadjun.dj ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
Assertion meadjun ( 𝜑 → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 meadjun.m ( 𝜑𝑀 ∈ Meas )
2 meadjun.x 𝑆 = dom 𝑀
3 meadjun.a ( 𝜑𝐴𝑆 )
4 meadjun.b ( 𝜑𝐵𝑆 )
5 meadjun.dj ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
6 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
7 1 2 meaf ( 𝜑𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) )
8 7 4 ffvelrnd ( 𝜑 → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
9 6 8 sselid ( 𝜑 → ( 𝑀𝐵 ) ∈ ℝ* )
10 xaddid2 ( ( 𝑀𝐵 ) ∈ ℝ* → ( 0 +𝑒 ( 𝑀𝐵 ) ) = ( 𝑀𝐵 ) )
11 9 10 syl ( 𝜑 → ( 0 +𝑒 ( 𝑀𝐵 ) ) = ( 𝑀𝐵 ) )
12 11 eqcomd ( 𝜑 → ( 𝑀𝐵 ) = ( 0 +𝑒 ( 𝑀𝐵 ) ) )
13 12 adantr ( ( 𝜑𝐴 = ∅ ) → ( 𝑀𝐵 ) = ( 0 +𝑒 ( 𝑀𝐵 ) ) )
14 uneq1 ( 𝐴 = ∅ → ( 𝐴𝐵 ) = ( ∅ ∪ 𝐵 ) )
15 0un ( ∅ ∪ 𝐵 ) = 𝐵
16 15 a1i ( 𝐴 = ∅ → ( ∅ ∪ 𝐵 ) = 𝐵 )
17 14 16 eqtrd ( 𝐴 = ∅ → ( 𝐴𝐵 ) = 𝐵 )
18 17 fveq2d ( 𝐴 = ∅ → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( 𝑀𝐵 ) )
19 18 adantl ( ( 𝜑𝐴 = ∅ ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( 𝑀𝐵 ) )
20 fveq2 ( 𝐴 = ∅ → ( 𝑀𝐴 ) = ( 𝑀 ‘ ∅ ) )
21 20 adantl ( ( 𝜑𝐴 = ∅ ) → ( 𝑀𝐴 ) = ( 𝑀 ‘ ∅ ) )
22 1 mea0 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
23 22 adantr ( ( 𝜑𝐴 = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 )
24 21 23 eqtrd ( ( 𝜑𝐴 = ∅ ) → ( 𝑀𝐴 ) = 0 )
25 24 oveq1d ( ( 𝜑𝐴 = ∅ ) → ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) = ( 0 +𝑒 ( 𝑀𝐵 ) ) )
26 13 19 25 3eqtr4d ( ( 𝜑𝐴 = ∅ ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )
27 simpl ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝜑 )
28 5 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝐴 = 𝐵 ) → ( 𝐴𝐵 ) = ∅ )
29 inidm ( 𝐴𝐴 ) = 𝐴
30 29 eqcomi 𝐴 = ( 𝐴𝐴 )
31 ineq2 ( 𝐴 = 𝐵 → ( 𝐴𝐴 ) = ( 𝐴𝐵 ) )
32 30 31 eqtr2id ( 𝐴 = 𝐵 → ( 𝐴𝐵 ) = 𝐴 )
33 32 adantl ( ( ¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵 ) → ( 𝐴𝐵 ) = 𝐴 )
34 neqne ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ )
35 34 adantr ( ( ¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵 ) → 𝐴 ≠ ∅ )
36 33 35 eqnetrd ( ( ¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵 ) → ( 𝐴𝐵 ) ≠ ∅ )
37 36 neneqd ( ( ¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵 ) → ¬ ( 𝐴𝐵 ) = ∅ )
38 37 adantll ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝐴 = 𝐵 ) → ¬ ( 𝐴𝐵 ) = ∅ )
39 28 38 pm2.65da ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ¬ 𝐴 = 𝐵 )
40 39 neqned ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴𝐵 )
41 uniprg ( ( 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
42 3 4 41 syl2anc ( 𝜑 { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
43 42 eqcomd ( 𝜑 → ( 𝐴𝐵 ) = { 𝐴 , 𝐵 } )
44 43 fveq2d ( 𝜑 → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( 𝑀 { 𝐴 , 𝐵 } ) )
45 44 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( 𝑀 { 𝐴 , 𝐵 } ) )
46 3 4 prssd ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝑆 )
47 prfi { 𝐴 , 𝐵 } ∈ Fin
48 isfinite ( { 𝐴 , 𝐵 } ∈ Fin ↔ { 𝐴 , 𝐵 } ≺ ω )
49 48 biimpi ( { 𝐴 , 𝐵 } ∈ Fin → { 𝐴 , 𝐵 } ≺ ω )
50 sdomdom ( { 𝐴 , 𝐵 } ≺ ω → { 𝐴 , 𝐵 } ≼ ω )
51 49 50 syl ( { 𝐴 , 𝐵 } ∈ Fin → { 𝐴 , 𝐵 } ≼ ω )
52 47 51 ax-mp { 𝐴 , 𝐵 } ≼ ω
53 52 a1i ( 𝜑 → { 𝐴 , 𝐵 } ≼ ω )
54 disjxsn Disj 𝑥 ∈ { 𝐵 } 𝑥
55 54 a1i ( 𝐴 = 𝐵Disj 𝑥 ∈ { 𝐵 } 𝑥 )
56 preq1 ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐵 , 𝐵 } )
57 dfsn2 { 𝐵 } = { 𝐵 , 𝐵 }
58 57 eqcomi { 𝐵 , 𝐵 } = { 𝐵 }
59 58 a1i ( 𝐴 = 𝐵 → { 𝐵 , 𝐵 } = { 𝐵 } )
60 56 59 eqtrd ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐵 } )
61 60 disjeq1d ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥Disj 𝑥 ∈ { 𝐵 } 𝑥 ) )
62 55 61 mpbird ( 𝐴 = 𝐵Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 )
63 62 adantl ( ( 𝜑𝐴 = 𝐵 ) → Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 )
64 simpl ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝜑 )
65 neqne ( ¬ 𝐴 = 𝐵𝐴𝐵 )
66 65 adantl ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴𝐵 )
67 5 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝐴𝐵 ) = ∅ )
68 3 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴𝑆 )
69 4 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵𝑆 )
70 simpr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐵 )
71 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
72 id ( 𝑥 = 𝐵𝑥 = 𝐵 )
73 71 72 disjprg ( ( 𝐴𝑆𝐵𝑆𝐴𝐵 ) → ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ↔ ( 𝐴𝐵 ) = ∅ ) )
74 68 69 70 73 syl3anc ( ( 𝜑𝐴𝐵 ) → ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ↔ ( 𝐴𝐵 ) = ∅ ) )
75 67 74 mpbird ( ( 𝜑𝐴𝐵 ) → Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 )
76 64 66 75 syl2anc ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 )
77 63 76 pm2.61dan ( 𝜑Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 )
78 1 2 46 53 77 meadjuni ( 𝜑 → ( 𝑀 { 𝐴 , 𝐵 } ) = ( Σ^ ‘ ( 𝑀 ↾ { 𝐴 , 𝐵 } ) ) )
79 78 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝑀 { 𝐴 , 𝐵 } ) = ( Σ^ ‘ ( 𝑀 ↾ { 𝐴 , 𝐵 } ) ) )
80 7 3 ffvelrnd ( 𝜑 → ( 𝑀𝐴 ) ∈ ( 0 [,] +∞ ) )
81 80 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝑀𝐴 ) ∈ ( 0 [,] +∞ ) )
82 8 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
83 fveq2 ( 𝑥 = 𝐴 → ( 𝑀𝑥 ) = ( 𝑀𝐴 ) )
84 fveq2 ( 𝑥 = 𝐵 → ( 𝑀𝑥 ) = ( 𝑀𝐵 ) )
85 68 69 81 82 83 84 70 sge0pr ( ( 𝜑𝐴𝐵 ) → ( Σ^ ‘ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑀𝑥 ) ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )
86 7 46 fssresd ( 𝜑 → ( 𝑀 ↾ { 𝐴 , 𝐵 } ) : { 𝐴 , 𝐵 } ⟶ ( 0 [,] +∞ ) )
87 86 feqmptd ( 𝜑 → ( 𝑀 ↾ { 𝐴 , 𝐵 } ) = ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( ( 𝑀 ↾ { 𝐴 , 𝐵 } ) ‘ 𝑥 ) ) )
88 fvres ( 𝑥 ∈ { 𝐴 , 𝐵 } → ( ( 𝑀 ↾ { 𝐴 , 𝐵 } ) ‘ 𝑥 ) = ( 𝑀𝑥 ) )
89 88 mpteq2ia ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( ( 𝑀 ↾ { 𝐴 , 𝐵 } ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑀𝑥 ) )
90 89 a1i ( 𝜑 → ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( ( 𝑀 ↾ { 𝐴 , 𝐵 } ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑀𝑥 ) ) )
91 87 90 eqtrd ( 𝜑 → ( 𝑀 ↾ { 𝐴 , 𝐵 } ) = ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑀𝑥 ) ) )
92 91 fveq2d ( 𝜑 → ( Σ^ ‘ ( 𝑀 ↾ { 𝐴 , 𝐵 } ) ) = ( Σ^ ‘ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑀𝑥 ) ) ) )
93 92 adantr ( ( 𝜑𝐴𝐵 ) → ( Σ^ ‘ ( 𝑀 ↾ { 𝐴 , 𝐵 } ) ) = ( Σ^ ‘ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑀𝑥 ) ) ) )
94 eqidd ( ( 𝜑𝐴𝐵 ) → ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )
95 85 93 94 3eqtr4d ( ( 𝜑𝐴𝐵 ) → ( Σ^ ‘ ( 𝑀 ↾ { 𝐴 , 𝐵 } ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )
96 45 79 95 3eqtrd ( ( 𝜑𝐴𝐵 ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )
97 27 40 96 syl2anc ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )
98 26 97 pm2.61dan ( 𝜑 → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )