| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disjprg.1 | ⊢ ( 𝑥  =  𝐴  →  𝐶  =  𝐷 ) | 
						
							| 2 |  | disjprg.2 | ⊢ ( 𝑥  =  𝐵  →  𝐶  =  𝐸 ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  =  𝑧  ↔  𝐴  =  𝑧 ) ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 6 | 4 5 1 | csbhypf | ⊢ ( 𝑦  =  𝐴  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  𝐷 ) | 
						
							| 7 | 6 | ineq1d | ⊢ ( 𝑦  =  𝐴  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅  ↔  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) | 
						
							| 9 | 3 8 | orbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) ) | 
						
							| 10 | 9 | ralbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) ) | 
						
							| 11 |  | eqeq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  =  𝑧  ↔  𝐵  =  𝑧 ) ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑥 𝐸 | 
						
							| 14 | 12 13 2 | csbhypf | ⊢ ( 𝑦  =  𝐵  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  𝐸 ) | 
						
							| 15 | 14 | ineq1d | ⊢ ( 𝑦  =  𝐵  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅  ↔  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) | 
						
							| 17 | 11 16 | orbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) ) | 
						
							| 18 | 17 | ralbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) ) | 
						
							| 19 | 10 18 | ralprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ∧  ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) ) ) | 
						
							| 20 | 19 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ∧  ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) ) ) | 
						
							| 21 |  | id | ⊢ ( 𝑧  =  𝐴  →  𝑧  =  𝐴 ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( 𝑧  =  𝐴  →  𝐴  =  𝑧 ) | 
						
							| 23 | 22 | orcd | ⊢ ( 𝑧  =  𝐴  →  ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) | 
						
							| 24 |  | trud | ⊢ ( 𝑧  =  𝐴  →  ⊤ ) | 
						
							| 25 | 23 24 | 2thd | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ⊤ ) ) | 
						
							| 26 |  | eqeq2 | ⊢ ( 𝑧  =  𝐵  →  ( 𝐴  =  𝑧  ↔  𝐴  =  𝐵 ) ) | 
						
							| 27 | 12 13 2 | csbhypf | ⊢ ( 𝑧  =  𝐵  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝐸 ) | 
						
							| 28 | 27 | ineq2d | ⊢ ( 𝑧  =  𝐵  →  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ( 𝐷  ∩  𝐸 ) ) | 
						
							| 29 | 28 | eqeq1d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅  ↔  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) | 
						
							| 30 | 26 29 | orbi12d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) | 
						
							| 31 | 25 30 | ralprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( ⊤  ∧  ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) ) | 
						
							| 32 | 31 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( ⊤  ∧  ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) ) | 
						
							| 33 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 34 | 33 | neneqd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ¬  𝐴  =  𝐵 ) | 
						
							| 35 |  | biorf | ⊢ ( ¬  𝐴  =  𝐵  →  ( ( 𝐷  ∩  𝐸 )  =  ∅  ↔  ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐷  ∩  𝐸 )  =  ∅  ↔  ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) | 
						
							| 37 |  | tru | ⊢ ⊤ | 
						
							| 38 | 37 | biantrur | ⊢ ( ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ )  ↔  ( ⊤  ∧  ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) | 
						
							| 39 | 36 38 | bitrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐷  ∩  𝐸 )  =  ∅  ↔  ( ⊤  ∧  ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) ) | 
						
							| 40 | 32 39 | bitr4d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) | 
						
							| 41 |  | eqeq2 | ⊢ ( 𝑧  =  𝐴  →  ( 𝐵  =  𝑧  ↔  𝐵  =  𝐴 ) ) | 
						
							| 42 |  | eqcom | ⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 ) | 
						
							| 43 | 41 42 | bitrdi | ⊢ ( 𝑧  =  𝐴  →  ( 𝐵  =  𝑧  ↔  𝐴  =  𝐵 ) ) | 
						
							| 44 | 4 5 1 | csbhypf | ⊢ ( 𝑧  =  𝐴  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝐷 ) | 
						
							| 45 | 44 | ineq2d | ⊢ ( 𝑧  =  𝐴  →  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ( 𝐸  ∩  𝐷 ) ) | 
						
							| 46 |  | incom | ⊢ ( 𝐸  ∩  𝐷 )  =  ( 𝐷  ∩  𝐸 ) | 
						
							| 47 | 45 46 | eqtrdi | ⊢ ( 𝑧  =  𝐴  →  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ( 𝐷  ∩  𝐸 ) ) | 
						
							| 48 | 47 | eqeq1d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅  ↔  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) | 
						
							| 49 | 43 48 | orbi12d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) | 
						
							| 50 |  | id | ⊢ ( 𝑧  =  𝐵  →  𝑧  =  𝐵 ) | 
						
							| 51 | 50 | eqcomd | ⊢ ( 𝑧  =  𝐵  →  𝐵  =  𝑧 ) | 
						
							| 52 | 51 | orcd | ⊢ ( 𝑧  =  𝐵  →  ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) | 
						
							| 53 |  | trud | ⊢ ( 𝑧  =  𝐵  →  ⊤ ) | 
						
							| 54 | 52 53 | 2thd | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ⊤ ) ) | 
						
							| 55 | 49 54 | ralprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ )  ∧  ⊤ ) ) ) | 
						
							| 56 | 55 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ )  ∧  ⊤ ) ) ) | 
						
							| 57 | 37 | biantru | ⊢ ( ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ )  ↔  ( ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ )  ∧  ⊤ ) ) | 
						
							| 58 | 36 57 | bitrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐷  ∩  𝐸 )  =  ∅  ↔  ( ( 𝐴  =  𝐵  ∨  ( 𝐷  ∩  𝐸 )  =  ∅ )  ∧  ⊤ ) ) ) | 
						
							| 59 | 56 58 | bitr4d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) | 
						
							| 60 | 40 59 | anbi12d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ( ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐴  =  𝑧  ∨  ( 𝐷  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ∧  ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝐵  =  𝑧  ∨  ( 𝐸  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) )  ↔  ( ( 𝐷  ∩  𝐸 )  =  ∅  ∧  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) | 
						
							| 61 | 20 60 | bitrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ )  ↔  ( ( 𝐷  ∩  𝐸 )  =  ∅  ∧  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) ) | 
						
							| 62 |  | disjors | ⊢ ( Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝐶  ↔  ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } ∀ 𝑧  ∈  { 𝐴 ,  𝐵 } ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ∅ ) ) | 
						
							| 63 |  | pm4.24 | ⊢ ( ( 𝐷  ∩  𝐸 )  =  ∅  ↔  ( ( 𝐷  ∩  𝐸 )  =  ∅  ∧  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) | 
						
							| 64 | 61 62 63 | 3bitr4g | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ≠  𝐵 )  →  ( Disj  𝑥  ∈  { 𝐴 ,  𝐵 } 𝐶  ↔  ( 𝐷  ∩  𝐸 )  =  ∅ ) ) |