Metamath Proof Explorer


Theorem meaxrcl

Description: The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meaxrcl.1 φ M Meas
meaxrcl.2 S = dom M
meaxrcl.3 φ A S
Assertion meaxrcl φ M A *

Proof

Step Hyp Ref Expression
1 meaxrcl.1 φ M Meas
2 meaxrcl.2 S = dom M
3 meaxrcl.3 φ A S
4 iccssxr 0 +∞ *
5 1 2 3 meacl φ M A 0 +∞
6 4 5 sselid φ M A *