Metamath Proof Explorer


Theorem meaxrcl

Description: The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meaxrcl.1 φMMeas
meaxrcl.2 S=domM
meaxrcl.3 φAS
Assertion meaxrcl φMA*

Proof

Step Hyp Ref Expression
1 meaxrcl.1 φMMeas
2 meaxrcl.2 S=domM
3 meaxrcl.3 φAS
4 iccssxr 0+∞*
5 1 2 3 meacl φMA0+∞
6 4 5 sselid φMA*