Description: The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meaxrcl.1 | |- ( ph -> M e. Meas ) |
|
| meaxrcl.2 | |- S = dom M |
||
| meaxrcl.3 | |- ( ph -> A e. S ) |
||
| Assertion | meaxrcl | |- ( ph -> ( M ` A ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaxrcl.1 | |- ( ph -> M e. Meas ) |
|
| 2 | meaxrcl.2 | |- S = dom M |
|
| 3 | meaxrcl.3 | |- ( ph -> A e. S ) |
|
| 4 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 5 | 1 2 3 | meacl | |- ( ph -> ( M ` A ) e. ( 0 [,] +oo ) ) |
| 6 | 4 5 | sselid | |- ( ph -> ( M ` A ) e. RR* ) |