Metamath Proof Explorer


Theorem meaxrcl

Description: The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meaxrcl.1
|- ( ph -> M e. Meas )
meaxrcl.2
|- S = dom M
meaxrcl.3
|- ( ph -> A e. S )
Assertion meaxrcl
|- ( ph -> ( M ` A ) e. RR* )

Proof

Step Hyp Ref Expression
1 meaxrcl.1
 |-  ( ph -> M e. Meas )
2 meaxrcl.2
 |-  S = dom M
3 meaxrcl.3
 |-  ( ph -> A e. S )
4 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
5 1 2 3 meacl
 |-  ( ph -> ( M ` A ) e. ( 0 [,] +oo ) )
6 4 5 sselid
 |-  ( ph -> ( M ` A ) e. RR* )