Metamath Proof Explorer


Theorem meaxrcl

Description: The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meaxrcl.1 ( 𝜑𝑀 ∈ Meas )
meaxrcl.2 𝑆 = dom 𝑀
meaxrcl.3 ( 𝜑𝐴𝑆 )
Assertion meaxrcl ( 𝜑 → ( 𝑀𝐴 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 meaxrcl.1 ( 𝜑𝑀 ∈ Meas )
2 meaxrcl.2 𝑆 = dom 𝑀
3 meaxrcl.3 ( 𝜑𝐴𝑆 )
4 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
5 1 2 3 meacl ( 𝜑 → ( 𝑀𝐴 ) ∈ ( 0 [,] +∞ ) )
6 4 5 sselid ( 𝜑 → ( 𝑀𝐴 ) ∈ ℝ* )