| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaunle.1 | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meaunle.2 | ⊢ 𝑆  =  dom  𝑀 | 
						
							| 3 |  | meaunle.3 | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 4 |  | meaunle.4 | ⊢ ( 𝜑  →  𝐵  ∈  𝑆 ) | 
						
							| 5 |  | undif2 | ⊢ ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  ( 𝐴  ∪  𝐵 ) | 
						
							| 6 | 5 | eqcomi | ⊢ ( 𝐴  ∪  𝐵 )  =  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 7 | 6 | fveq2i | ⊢ ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( 𝑀 ‘ ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( 𝑀 ‘ ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) ) ) ) | 
						
							| 9 | 1 2 | dmmeasal | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 10 |  | saldifcl2 | ⊢ ( ( 𝑆  ∈  SAlg  ∧  𝐵  ∈  𝑆  ∧  𝐴  ∈  𝑆 )  →  ( 𝐵  ∖  𝐴 )  ∈  𝑆 ) | 
						
							| 11 | 9 4 3 10 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝐴 )  ∈  𝑆 ) | 
						
							| 12 |  | disjdif | ⊢ ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  =  ∅ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  =  ∅ ) | 
						
							| 14 | 1 2 3 11 13 | meadjun | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) ) )  =  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ ( 𝐵  ∖  𝐴 ) ) ) ) | 
						
							| 15 | 8 14 | eqtrd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ ( 𝐵  ∖  𝐴 ) ) ) ) | 
						
							| 16 | 1 2 11 | meaxrcl | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐵  ∖  𝐴 ) )  ∈  ℝ* ) | 
						
							| 17 | 1 2 4 | meaxrcl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 18 | 1 2 3 | meaxrcl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 19 |  | difssd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝐴 )  ⊆  𝐵 ) | 
						
							| 20 | 1 2 11 4 19 | meassle | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐵  ∖  𝐴 ) )  ≤  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 21 | 16 17 18 20 | xleadd2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ ( 𝐵  ∖  𝐴 ) ) )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 22 | 15 21 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐴  ∪  𝐵 ) )  ≤  ( ( 𝑀 ‘ 𝐴 )  +𝑒  ( 𝑀 ‘ 𝐵 ) ) ) |