Step |
Hyp |
Ref |
Expression |
1 |
|
meaunle.1 |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
2 |
|
meaunle.2 |
⊢ 𝑆 = dom 𝑀 |
3 |
|
meaunle.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
4 |
|
meaunle.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
5 |
|
undif2 |
⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) |
6 |
5
|
eqcomi |
⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) |
7 |
6
|
fveq2i |
⊢ ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( 𝑀 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( 𝑀 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) ) |
9 |
1 2
|
dmmeasal |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
10 |
|
saldifcl2 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐵 ∖ 𝐴 ) ∈ 𝑆 ) |
11 |
9 4 3 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ∈ 𝑆 ) |
12 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) |
14 |
1 2 3 11 13
|
meadjun |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
15 |
8 14
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
16 |
1 2 11
|
meaxrcl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℝ* ) |
17 |
1 2 4
|
meaxrcl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ℝ* ) |
18 |
1 2 3
|
meaxrcl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) |
19 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 ) |
20 |
1 2 11 4 19
|
meassle |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐵 ∖ 𝐴 ) ) ≤ ( 𝑀 ‘ 𝐵 ) ) |
21 |
16 17 18 20
|
xleadd2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |
22 |
15 21
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |