| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meadjiunlem.f | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meadjiunlem.3 | ⊢ 𝑆  =  dom  𝑀 | 
						
							| 3 |  | meadjiunlem.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 4 |  | meadjiunlem.g | ⊢ ( 𝜑  →  𝐺 : 𝑋 ⟶ 𝑆 ) | 
						
							| 5 |  | meadjiunlem.y | ⊢ 𝑌  =  { 𝑖  ∈  𝑋  ∣  ( 𝐺 ‘ 𝑖 )  ≠  ∅ } | 
						
							| 6 |  | meadjiunlem.dj | ⊢ ( 𝜑  →  Disj  𝑖  ∈  𝑋 ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 8 | 4 3 | jca | ⊢ ( 𝜑  →  ( 𝐺 : 𝑋 ⟶ 𝑆  ∧  𝑋  ∈  𝑉 ) ) | 
						
							| 9 |  | fex | ⊢ ( ( 𝐺 : 𝑋 ⟶ 𝑆  ∧  𝑋  ∈  𝑉 )  →  𝐺  ∈  V ) | 
						
							| 10 |  | rnexg | ⊢ ( 𝐺  ∈  V  →  ran  𝐺  ∈  V ) | 
						
							| 11 | 8 9 10 | 3syl | ⊢ ( 𝜑  →  ran  𝐺  ∈  V ) | 
						
							| 12 |  | difssd | ⊢ ( 𝜑  →  ( ran  𝐺  ∖  { ∅ } )  ⊆  ran  𝐺 ) | 
						
							| 13 | 1 2 | meaf | ⊢ ( 𝜑  →  𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐺  ∖  { ∅ } ) )  →  𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 15 | 4 | frnd | ⊢ ( 𝜑  →  ran  𝐺  ⊆  𝑆 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐺  ∖  { ∅ } ) )  →  ran  𝐺  ⊆  𝑆 ) | 
						
							| 17 | 12 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐺  ∖  { ∅ } ) )  →  𝑘  ∈  ran  𝐺 ) | 
						
							| 18 | 16 17 | sseldd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐺  ∖  { ∅ } ) )  →  𝑘  ∈  𝑆 ) | 
						
							| 19 | 14 18 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐺  ∖  { ∅ } ) )  →  ( 𝑀 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐺  ∖  ( ran  𝐺  ∖  { ∅ } ) ) )  →  𝜑 ) | 
						
							| 21 |  | id | ⊢ ( 𝑘  ∈  ( ran  𝐺  ∖  ( ran  𝐺  ∖  { ∅ } ) )  →  𝑘  ∈  ( ran  𝐺  ∖  ( ran  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 22 |  | dfin4 | ⊢ ( ran  𝐺  ∩  { ∅ } )  =  ( ran  𝐺  ∖  ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 23 | 22 | eqcomi | ⊢ ( ran  𝐺  ∖  ( ran  𝐺  ∖  { ∅ } ) )  =  ( ran  𝐺  ∩  { ∅ } ) | 
						
							| 24 | 21 23 | eleqtrdi | ⊢ ( 𝑘  ∈  ( ran  𝐺  ∖  ( ran  𝐺  ∖  { ∅ } ) )  →  𝑘  ∈  ( ran  𝐺  ∩  { ∅ } ) ) | 
						
							| 25 |  | elinel2 | ⊢ ( 𝑘  ∈  ( ran  𝐺  ∩  { ∅ } )  →  𝑘  ∈  { ∅ } ) | 
						
							| 26 |  | elsni | ⊢ ( 𝑘  ∈  { ∅ }  →  𝑘  =  ∅ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝑘  ∈  ( ran  𝐺  ∩  { ∅ } )  →  𝑘  =  ∅ ) | 
						
							| 28 | 24 27 | syl | ⊢ ( 𝑘  ∈  ( ran  𝐺  ∖  ( ran  𝐺  ∖  { ∅ } ) )  →  𝑘  =  ∅ ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐺  ∖  ( ran  𝐺  ∖  { ∅ } ) ) )  →  𝑘  =  ∅ ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  =  ∅ )  →  𝑘  =  ∅ ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  =  ∅ )  →  ( 𝑀 ‘ 𝑘 )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 32 | 1 | mea0 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  ∅ )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 34 | 31 33 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  =  ∅ )  →  ( 𝑀 ‘ 𝑘 )  =  0 ) | 
						
							| 35 | 20 29 34 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ran  𝐺  ∖  ( ran  𝐺  ∖  { ∅ } ) ) )  →  ( 𝑀 ‘ 𝑘 )  =  0 ) | 
						
							| 36 | 7 11 12 19 35 | sge0ss | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( ran  𝐺  ∖  { ∅ } )  ↦  ( 𝑀 ‘ 𝑘 ) ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ran  𝐺  ↦  ( 𝑀 ‘ 𝑘 ) ) ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ran  𝐺  ↦  ( 𝑀 ‘ 𝑘 ) ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ( ran  𝐺  ∖  { ∅ } )  ↦  ( 𝑀 ‘ 𝑘 ) ) ) ) | 
						
							| 38 | 13 15 | feqresmpt | ⊢ ( 𝜑  →  ( 𝑀  ↾  ran  𝐺 )  =  ( 𝑘  ∈  ran  𝐺  ↦  ( 𝑀 ‘ 𝑘 ) ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑀  ↾  ran  𝐺 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ran  𝐺  ↦  ( 𝑀 ‘ 𝑘 ) ) ) ) | 
						
							| 40 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( 𝐺 ‘ 𝑗 )  ∈  𝑆 ) | 
						
							| 41 | 4 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑗  ∈  𝑋  ↦  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 42 | 13 | feqmptd | ⊢ ( 𝜑  →  𝑀  =  ( 𝑘  ∈  𝑆  ↦  ( 𝑀 ‘ 𝑘 ) ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝐺 ‘ 𝑗 )  →  ( 𝑀 ‘ 𝑘 )  =  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 44 | 40 41 42 43 | fmptco | ⊢ ( 𝜑  →  ( 𝑀  ∘  𝐺 )  =  ( 𝑗  ∈  𝑋  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑀  ∘  𝐺 ) )  =  ( Σ^ ‘ ( 𝑗  ∈  𝑋  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 46 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 47 |  | ssrab2 | ⊢ { 𝑖  ∈  𝑋  ∣  ( 𝐺 ‘ 𝑖 )  ≠  ∅ }  ⊆  𝑋 | 
						
							| 48 | 47 | a1i | ⊢ ( 𝜑  →  { 𝑖  ∈  𝑋  ∣  ( 𝐺 ‘ 𝑖 )  ≠  ∅ }  ⊆  𝑋 ) | 
						
							| 49 | 5 48 | eqsstrid | ⊢ ( 𝜑  →  𝑌  ⊆  𝑋 ) | 
						
							| 50 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑌 )  →  𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 51 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑌 )  →  𝐺 : 𝑋 ⟶ 𝑆 ) | 
						
							| 52 | 49 | sselda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑌 )  →  𝑗  ∈  𝑋 ) | 
						
							| 53 | 51 52 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑌 )  →  ( 𝐺 ‘ 𝑗 )  ∈  𝑆 ) | 
						
							| 54 | 50 53 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑌 )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 55 |  | eldifi | ⊢ ( 𝑗  ∈  ( 𝑋  ∖  𝑌 )  →  𝑗  ∈  𝑋 ) | 
						
							| 56 | 55 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  ∧  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 )  →  𝑗  ∈  𝑋 ) | 
						
							| 57 |  | fveq2 | ⊢ ( ( 𝐺 ‘ 𝑗 )  =  ∅  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑗 )  =  ∅ )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 59 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑗 )  =  ∅ )  →  𝑀  ∈  Meas ) | 
						
							| 60 | 59 | mea0 | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑗 )  =  ∅ )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 61 | 58 60 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑗 )  =  ∅ )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  =  0 ) | 
						
							| 62 | 61 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  ∧  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 )  ∧  ( 𝐺 ‘ 𝑗 )  =  ∅ )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  =  0 ) | 
						
							| 63 |  | neneq | ⊢ ( ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0  →  ¬  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  =  0 ) | 
						
							| 64 | 63 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  ∧  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 )  ∧  ( 𝐺 ‘ 𝑗 )  =  ∅ )  →  ¬  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  =  0 ) | 
						
							| 65 | 62 64 | pm2.65da | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  ∧  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 )  →  ¬  ( 𝐺 ‘ 𝑗 )  =  ∅ ) | 
						
							| 66 | 65 | neqned | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  ∧  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 )  →  ( 𝐺 ‘ 𝑗 )  ≠  ∅ ) | 
						
							| 67 | 56 66 | jca | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  ∧  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 )  →  ( 𝑗  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑗 )  ≠  ∅ ) ) | 
						
							| 68 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 69 | 68 | neeq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐺 ‘ 𝑖 )  ≠  ∅  ↔  ( 𝐺 ‘ 𝑗 )  ≠  ∅ ) ) | 
						
							| 70 | 69 | elrab | ⊢ ( 𝑗  ∈  { 𝑖  ∈  𝑋  ∣  ( 𝐺 ‘ 𝑖 )  ≠  ∅ }  ↔  ( 𝑗  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑗 )  ≠  ∅ ) ) | 
						
							| 71 | 67 70 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  ∧  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 )  →  𝑗  ∈  { 𝑖  ∈  𝑋  ∣  ( 𝐺 ‘ 𝑖 )  ≠  ∅ } ) | 
						
							| 72 | 71 5 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  ∧  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 )  →  𝑗  ∈  𝑌 ) | 
						
							| 73 |  | eldifn | ⊢ ( 𝑗  ∈  ( 𝑋  ∖  𝑌 )  →  ¬  𝑗  ∈  𝑌 ) | 
						
							| 74 | 73 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  ∧  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 )  →  ¬  𝑗  ∈  𝑌 ) | 
						
							| 75 | 72 74 | pm2.65da | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  →  ¬  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0 ) | 
						
							| 76 |  | nne | ⊢ ( ¬  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  ≠  0  ↔  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  =  0 ) | 
						
							| 77 | 75 76 | sylib | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑋  ∖  𝑌 ) )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) )  =  0 ) | 
						
							| 78 | 46 3 49 54 77 | sge0ss | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  𝑌  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  𝑋  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 79 | 78 | eqcomd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  𝑋  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  𝑌  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 80 | 3 49 | ssexd | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 81 |  | nfv | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 82 |  | eqid | ⊢ ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) )  =  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 83 | 4 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝑋 ) | 
						
							| 84 |  | dffn3 | ⊢ ( 𝐺  Fn  𝑋  ↔  𝐺 : 𝑋 ⟶ ran  𝐺 ) | 
						
							| 85 | 83 84 | sylib | ⊢ ( 𝜑  →  𝐺 : 𝑋 ⟶ ran  𝐺 ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑌 )  →  𝐺 : 𝑋 ⟶ ran  𝐺 ) | 
						
							| 87 | 49 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑌 )  →  𝑖  ∈  𝑋 ) | 
						
							| 88 | 86 87 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑌 )  →  ( 𝐺 ‘ 𝑖 )  ∈  ran  𝐺 ) | 
						
							| 89 | 5 | eleq2i | ⊢ ( 𝑖  ∈  𝑌  ↔  𝑖  ∈  { 𝑖  ∈  𝑋  ∣  ( 𝐺 ‘ 𝑖 )  ≠  ∅ } ) | 
						
							| 90 |  | rabid | ⊢ ( 𝑖  ∈  { 𝑖  ∈  𝑋  ∣  ( 𝐺 ‘ 𝑖 )  ≠  ∅ }  ↔  ( 𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  ≠  ∅ ) ) | 
						
							| 91 | 89 90 | bitri | ⊢ ( 𝑖  ∈  𝑌  ↔  ( 𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  ≠  ∅ ) ) | 
						
							| 92 | 91 | biimpi | ⊢ ( 𝑖  ∈  𝑌  →  ( 𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  ≠  ∅ ) ) | 
						
							| 93 | 92 | simprd | ⊢ ( 𝑖  ∈  𝑌  →  ( 𝐺 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑌 )  →  ( 𝐺 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 95 |  | nelsn | ⊢ ( ( 𝐺 ‘ 𝑖 )  ≠  ∅  →  ¬  ( 𝐺 ‘ 𝑖 )  ∈  { ∅ } ) | 
						
							| 96 | 94 95 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑌 )  →  ¬  ( 𝐺 ‘ 𝑖 )  ∈  { ∅ } ) | 
						
							| 97 | 88 96 | eldifd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑌 )  →  ( 𝐺 ‘ 𝑖 )  ∈  ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 98 |  | disjss1 | ⊢ ( 𝑌  ⊆  𝑋  →  ( Disj  𝑖  ∈  𝑋 ( 𝐺 ‘ 𝑖 )  →  Disj  𝑖  ∈  𝑌 ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 99 | 49 6 98 | sylc | ⊢ ( 𝜑  →  Disj  𝑖  ∈  𝑌 ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 100 | 81 82 97 94 99 | disjf1 | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) ) : 𝑌 –1-1→ ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 101 | 4 49 | feqresmpt | ⊢ ( 𝜑  →  ( 𝐺  ↾  𝑌 )  =  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 102 |  | f1eq1 | ⊢ ( ( 𝐺  ↾  𝑌 )  =  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) )  →  ( ( 𝐺  ↾  𝑌 ) : 𝑌 –1-1→ ( ran  𝐺  ∖  { ∅ } )  ↔  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) ) : 𝑌 –1-1→ ( ran  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 103 | 101 102 | syl | ⊢ ( 𝜑  →  ( ( 𝐺  ↾  𝑌 ) : 𝑌 –1-1→ ( ran  𝐺  ∖  { ∅ } )  ↔  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) ) : 𝑌 –1-1→ ( ran  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 104 | 100 103 | mpbird | ⊢ ( 𝜑  →  ( 𝐺  ↾  𝑌 ) : 𝑌 –1-1→ ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 105 | 101 | rneqd | ⊢ ( 𝜑  →  ran  ( 𝐺  ↾  𝑌 )  =  ran  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 106 | 97 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑌 ( 𝐺 ‘ 𝑖 )  ∈  ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 107 | 82 | rnmptss | ⊢ ( ∀ 𝑖  ∈  𝑌 ( 𝐺 ‘ 𝑖 )  ∈  ( ran  𝐺  ∖  { ∅ } )  →  ran  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) )  ⊆  ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 108 | 106 107 | syl | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) )  ⊆  ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 109 | 105 108 | eqsstrd | ⊢ ( 𝜑  →  ran  ( 𝐺  ↾  𝑌 )  ⊆  ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 110 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ran  𝐺  ∖  { ∅ } ) )  →  𝜑 ) | 
						
							| 111 |  | eldifi | ⊢ ( 𝑥  ∈  ( ran  𝐺  ∖  { ∅ } )  →  𝑥  ∈  ran  𝐺 ) | 
						
							| 112 | 111 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ran  𝐺  ∖  { ∅ } ) )  →  𝑥  ∈  ran  𝐺 ) | 
						
							| 113 |  | eldifsni | ⊢ ( 𝑥  ∈  ( ran  𝐺  ∖  { ∅ } )  →  𝑥  ≠  ∅ ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ran  𝐺  ∖  { ∅ } ) )  →  𝑥  ≠  ∅ ) | 
						
							| 115 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  𝐺 )  →  𝑥  ∈  ran  𝐺 ) | 
						
							| 116 |  | fvelrnb | ⊢ ( 𝐺  Fn  𝑋  →  ( 𝑥  ∈  ran  𝐺  ↔  ∃ 𝑖  ∈  𝑋 ( 𝐺 ‘ 𝑖 )  =  𝑥 ) ) | 
						
							| 117 | 83 116 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ran  𝐺  ↔  ∃ 𝑖  ∈  𝑋 ( 𝐺 ‘ 𝑖 )  =  𝑥 ) ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  𝐺 )  →  ( 𝑥  ∈  ran  𝐺  ↔  ∃ 𝑖  ∈  𝑋 ( 𝐺 ‘ 𝑖 )  =  𝑥 ) ) | 
						
							| 119 | 115 118 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  𝐺 )  →  ∃ 𝑖  ∈  𝑋 ( 𝐺 ‘ 𝑖 )  =  𝑥 ) | 
						
							| 120 | 119 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  𝐺  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑖  ∈  𝑋 ( 𝐺 ‘ 𝑖 )  =  𝑥 ) | 
						
							| 121 |  | id | ⊢ ( ( 𝐺 ‘ 𝑖 )  =  𝑥  →  ( 𝐺 ‘ 𝑖 )  =  𝑥 ) | 
						
							| 122 | 121 | eqcomd | ⊢ ( ( 𝐺 ‘ 𝑖 )  =  𝑥  →  𝑥  =  ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 123 | 122 | 3ad2ant3 | ⊢ ( ( ( 𝜑  ∧  𝑥  ≠  ∅ )  ∧  𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  𝑥  =  ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 124 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  𝑥  ≠  ∅ )  ∧  𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  𝜑 ) | 
						
							| 125 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ≠  ∅ )  ∧  𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  𝑖  ∈  𝑋 ) | 
						
							| 126 |  | simpr | ⊢ ( ( 𝑥  ≠  ∅  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  ( 𝐺 ‘ 𝑖 )  =  𝑥 ) | 
						
							| 127 |  | simpl | ⊢ ( ( 𝑥  ≠  ∅  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  𝑥  ≠  ∅ ) | 
						
							| 128 | 126 127 | eqnetrd | ⊢ ( ( 𝑥  ≠  ∅  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  ( 𝐺 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 129 | 128 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ≠  ∅ )  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  ( 𝐺 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 130 | 129 | 3adant2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ≠  ∅ )  ∧  𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  ( 𝐺 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 131 | 91 | biimpri | ⊢ ( ( 𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  ≠  ∅ )  →  𝑖  ∈  𝑌 ) | 
						
							| 132 |  | fvexd | ⊢ ( ( 𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  ≠  ∅ )  →  ( 𝐺 ‘ 𝑖 )  ∈  V ) | 
						
							| 133 | 82 | elrnmpt1 | ⊢ ( ( 𝑖  ∈  𝑌  ∧  ( 𝐺 ‘ 𝑖 )  ∈  V )  →  ( 𝐺 ‘ 𝑖 )  ∈  ran  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 134 | 131 132 133 | syl2anc | ⊢ ( ( 𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  ≠  ∅ )  →  ( 𝐺 ‘ 𝑖 )  ∈  ran  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 135 | 134 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  ≠  ∅ )  →  ( 𝐺 ‘ 𝑖 )  ∈  ran  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 136 | 105 | eqcomd | ⊢ ( 𝜑  →  ran  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) )  =  ran  ( 𝐺  ↾  𝑌 ) ) | 
						
							| 137 | 136 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  ≠  ∅ )  →  ran  ( 𝑖  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑖 ) )  =  ran  ( 𝐺  ↾  𝑌 ) ) | 
						
							| 138 | 135 137 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  ≠  ∅ )  →  ( 𝐺 ‘ 𝑖 )  ∈  ran  ( 𝐺  ↾  𝑌 ) ) | 
						
							| 139 | 124 125 130 138 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ≠  ∅ )  ∧  𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  ( 𝐺 ‘ 𝑖 )  ∈  ran  ( 𝐺  ↾  𝑌 ) ) | 
						
							| 140 | 123 139 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ≠  ∅ )  ∧  𝑖  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑖 )  =  𝑥 )  →  𝑥  ∈  ran  ( 𝐺  ↾  𝑌 ) ) | 
						
							| 141 | 140 | 3exp | ⊢ ( ( 𝜑  ∧  𝑥  ≠  ∅ )  →  ( 𝑖  ∈  𝑋  →  ( ( 𝐺 ‘ 𝑖 )  =  𝑥  →  𝑥  ∈  ran  ( 𝐺  ↾  𝑌 ) ) ) ) | 
						
							| 142 | 141 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑥  ≠  ∅ )  →  ( ∃ 𝑖  ∈  𝑋 ( 𝐺 ‘ 𝑖 )  =  𝑥  →  𝑥  ∈  ran  ( 𝐺  ↾  𝑌 ) ) ) | 
						
							| 143 | 142 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  𝐺  ∧  𝑥  ≠  ∅ )  →  ( ∃ 𝑖  ∈  𝑋 ( 𝐺 ‘ 𝑖 )  =  𝑥  →  𝑥  ∈  ran  ( 𝐺  ↾  𝑌 ) ) ) | 
						
							| 144 | 120 143 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ran  𝐺  ∧  𝑥  ≠  ∅ )  →  𝑥  ∈  ran  ( 𝐺  ↾  𝑌 ) ) | 
						
							| 145 | 110 112 114 144 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ran  𝐺  ∖  { ∅ } ) )  →  𝑥  ∈  ran  ( 𝐺  ↾  𝑌 ) ) | 
						
							| 146 | 109 145 | eqelssd | ⊢ ( 𝜑  →  ran  ( 𝐺  ↾  𝑌 )  =  ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 147 | 104 146 | jca | ⊢ ( 𝜑  →  ( ( 𝐺  ↾  𝑌 ) : 𝑌 –1-1→ ( ran  𝐺  ∖  { ∅ } )  ∧  ran  ( 𝐺  ↾  𝑌 )  =  ( ran  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 148 |  | dff1o5 | ⊢ ( ( 𝐺  ↾  𝑌 ) : 𝑌 –1-1-onto→ ( ran  𝐺  ∖  { ∅ } )  ↔  ( ( 𝐺  ↾  𝑌 ) : 𝑌 –1-1→ ( ran  𝐺  ∖  { ∅ } )  ∧  ran  ( 𝐺  ↾  𝑌 )  =  ( ran  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 149 | 147 148 | sylibr | ⊢ ( 𝜑  →  ( 𝐺  ↾  𝑌 ) : 𝑌 –1-1-onto→ ( ran  𝐺  ∖  { ∅ } ) ) | 
						
							| 150 |  | fvres | ⊢ ( 𝑗  ∈  𝑌  →  ( ( 𝐺  ↾  𝑌 ) ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 151 | 150 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑌 )  →  ( ( 𝐺  ↾  𝑌 ) ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 152 | 7 46 43 80 149 151 19 | sge0f1o | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( ran  𝐺  ∖  { ∅ } )  ↦  ( 𝑀 ‘ 𝑘 ) ) )  =  ( Σ^ ‘ ( 𝑗  ∈  𝑌  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 153 | 152 | eqcomd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑗  ∈  𝑌  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ( ran  𝐺  ∖  { ∅ } )  ↦  ( 𝑀 ‘ 𝑘 ) ) ) ) | 
						
							| 154 | 45 79 153 | 3eqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑀  ∘  𝐺 ) )  =  ( Σ^ ‘ ( 𝑘  ∈  ( ran  𝐺  ∖  { ∅ } )  ↦  ( 𝑀 ‘ 𝑘 ) ) ) ) | 
						
							| 155 | 37 39 154 | 3eqtr4d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑀  ↾  ran  𝐺 ) )  =  ( Σ^ ‘ ( 𝑀  ∘  𝐺 ) ) ) |