| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meadjiunlem.f |
|
| 2 |
|
meadjiunlem.3 |
|
| 3 |
|
meadjiunlem.x |
|
| 4 |
|
meadjiunlem.g |
|
| 5 |
|
meadjiunlem.y |
|
| 6 |
|
meadjiunlem.dj |
|
| 7 |
|
nfv |
|
| 8 |
4 3
|
jca |
|
| 9 |
|
fex |
|
| 10 |
|
rnexg |
|
| 11 |
8 9 10
|
3syl |
|
| 12 |
|
difssd |
|
| 13 |
1 2
|
meaf |
|
| 14 |
13
|
adantr |
|
| 15 |
4
|
frnd |
|
| 16 |
15
|
adantr |
|
| 17 |
12
|
sselda |
|
| 18 |
16 17
|
sseldd |
|
| 19 |
14 18
|
ffvelcdmd |
|
| 20 |
|
simpl |
|
| 21 |
|
id |
|
| 22 |
|
dfin4 |
|
| 23 |
22
|
eqcomi |
|
| 24 |
21 23
|
eleqtrdi |
|
| 25 |
|
elinel2 |
|
| 26 |
|
elsni |
|
| 27 |
25 26
|
syl |
|
| 28 |
24 27
|
syl |
|
| 29 |
28
|
adantl |
|
| 30 |
|
simpr |
|
| 31 |
30
|
fveq2d |
|
| 32 |
1
|
mea0 |
|
| 33 |
32
|
adantr |
|
| 34 |
31 33
|
eqtrd |
|
| 35 |
20 29 34
|
syl2anc |
|
| 36 |
7 11 12 19 35
|
sge0ss |
|
| 37 |
36
|
eqcomd |
|
| 38 |
13 15
|
feqresmpt |
|
| 39 |
38
|
fveq2d |
|
| 40 |
4
|
ffvelcdmda |
|
| 41 |
4
|
feqmptd |
|
| 42 |
13
|
feqmptd |
|
| 43 |
|
fveq2 |
|
| 44 |
40 41 42 43
|
fmptco |
|
| 45 |
44
|
fveq2d |
|
| 46 |
|
nfv |
|
| 47 |
|
ssrab2 |
|
| 48 |
47
|
a1i |
|
| 49 |
5 48
|
eqsstrid |
|
| 50 |
13
|
adantr |
|
| 51 |
4
|
adantr |
|
| 52 |
49
|
sselda |
|
| 53 |
51 52
|
ffvelcdmd |
|
| 54 |
50 53
|
ffvelcdmd |
|
| 55 |
|
eldifi |
|
| 56 |
55
|
ad2antlr |
|
| 57 |
|
fveq2 |
|
| 58 |
57
|
adantl |
|
| 59 |
1
|
adantr |
|
| 60 |
59
|
mea0 |
|
| 61 |
58 60
|
eqtrd |
|
| 62 |
61
|
ad4ant14 |
|
| 63 |
|
neneq |
|
| 64 |
63
|
ad2antlr |
|
| 65 |
62 64
|
pm2.65da |
|
| 66 |
65
|
neqned |
|
| 67 |
56 66
|
jca |
|
| 68 |
|
fveq2 |
|
| 69 |
68
|
neeq1d |
|
| 70 |
69
|
elrab |
|
| 71 |
67 70
|
sylibr |
|
| 72 |
71 5
|
eleqtrrdi |
|
| 73 |
|
eldifn |
|
| 74 |
73
|
ad2antlr |
|
| 75 |
72 74
|
pm2.65da |
|
| 76 |
|
nne |
|
| 77 |
75 76
|
sylib |
|
| 78 |
46 3 49 54 77
|
sge0ss |
|
| 79 |
78
|
eqcomd |
|
| 80 |
3 49
|
ssexd |
|
| 81 |
|
nfv |
|
| 82 |
|
eqid |
|
| 83 |
4
|
ffnd |
|
| 84 |
|
dffn3 |
|
| 85 |
83 84
|
sylib |
|
| 86 |
85
|
adantr |
|
| 87 |
49
|
sselda |
|
| 88 |
86 87
|
ffvelcdmd |
|
| 89 |
5
|
eleq2i |
|
| 90 |
|
rabid |
|
| 91 |
89 90
|
bitri |
|
| 92 |
91
|
biimpi |
|
| 93 |
92
|
simprd |
|
| 94 |
93
|
adantl |
|
| 95 |
|
nelsn |
|
| 96 |
94 95
|
syl |
|
| 97 |
88 96
|
eldifd |
|
| 98 |
|
disjss1 |
|
| 99 |
49 6 98
|
sylc |
|
| 100 |
81 82 97 94 99
|
disjf1 |
|
| 101 |
4 49
|
feqresmpt |
|
| 102 |
|
f1eq1 |
|
| 103 |
101 102
|
syl |
|
| 104 |
100 103
|
mpbird |
|
| 105 |
101
|
rneqd |
|
| 106 |
97
|
ralrimiva |
|
| 107 |
82
|
rnmptss |
|
| 108 |
106 107
|
syl |
|
| 109 |
105 108
|
eqsstrd |
|
| 110 |
|
simpl |
|
| 111 |
|
eldifi |
|
| 112 |
111
|
adantl |
|
| 113 |
|
eldifsni |
|
| 114 |
113
|
adantl |
|
| 115 |
|
simpr |
|
| 116 |
|
fvelrnb |
|
| 117 |
83 116
|
syl |
|
| 118 |
117
|
adantr |
|
| 119 |
115 118
|
mpbid |
|
| 120 |
119
|
3adant3 |
|
| 121 |
|
id |
|
| 122 |
121
|
eqcomd |
|
| 123 |
122
|
3ad2ant3 |
|
| 124 |
|
simp1l |
|
| 125 |
|
simp2 |
|
| 126 |
|
simpr |
|
| 127 |
|
simpl |
|
| 128 |
126 127
|
eqnetrd |
|
| 129 |
128
|
adantll |
|
| 130 |
129
|
3adant2 |
|
| 131 |
91
|
biimpri |
|
| 132 |
|
fvexd |
|
| 133 |
82
|
elrnmpt1 |
|
| 134 |
131 132 133
|
syl2anc |
|
| 135 |
134
|
3adant1 |
|
| 136 |
105
|
eqcomd |
|
| 137 |
136
|
3ad2ant1 |
|
| 138 |
135 137
|
eleqtrd |
|
| 139 |
124 125 130 138
|
syl3anc |
|
| 140 |
123 139
|
eqeltrd |
|
| 141 |
140
|
3exp |
|
| 142 |
141
|
rexlimdv |
|
| 143 |
142
|
3adant2 |
|
| 144 |
120 143
|
mpd |
|
| 145 |
110 112 114 144
|
syl3anc |
|
| 146 |
109 145
|
eqelssd |
|
| 147 |
104 146
|
jca |
|
| 148 |
|
dff1o5 |
|
| 149 |
147 148
|
sylibr |
|
| 150 |
|
fvres |
|
| 151 |
150
|
adantl |
|
| 152 |
7 46 43 80 149 151 19
|
sge0f1o |
|
| 153 |
152
|
eqcomd |
|
| 154 |
45 79 153
|
3eqtrd |
|
| 155 |
37 39 154
|
3eqtr4d |
|