Metamath Proof Explorer


Theorem meadjiun

Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meadjiun.1 k φ
meadjiun.m φ M Meas
meadjiun.s S = dom M
meadjiun.b φ k A B S
meadjiun.a φ A ω
meadjiun.dj φ Disj k A B
Assertion meadjiun φ M k A B = sum^ k A M B

Proof

Step Hyp Ref Expression
1 meadjiun.1 k φ
2 meadjiun.m φ M Meas
3 meadjiun.s S = dom M
4 meadjiun.b φ k A B S
5 meadjiun.a φ A ω
6 meadjiun.dj φ Disj k A B
7 4 ex φ k A B S
8 1 7 ralrimi φ k A B S
9 dfiun3g k A B S k A B = ran k A B
10 8 9 syl φ k A B = ran k A B
11 10 fveq2d φ M k A B = M ran k A B
12 eqid k A B = k A B
13 1 12 4 rnmptssd φ ran k A B S
14 1stcrestlem A ω ran k A B ω
15 5 14 syl φ ran k A B ω
16 12 disjrnmpt2 Disj k A B Disj x ran k A B x
17 6 16 syl φ Disj x ran k A B x
18 2 3 13 15 17 meadjuni φ M ran k A B = sum^ M ran k A B
19 reldom Rel
20 brrelex1 Rel A ω A V
21 19 20 mpan A ω A V
22 5 21 syl φ A V
23 1 4 12 fmptdf φ k A B : A S
24 fveq2 j = i k A B j = k A B i
25 24 neeq1d j = i k A B j k A B i
26 25 cbvrabv j A | k A B j = i A | k A B i
27 simpr φ i A i A
28 nfv k i A
29 1 28 nfan k φ i A
30 nfcv _ k i
31 30 nfcsb1 _ k i / k B
32 nfcv _ k S
33 31 32 nfel k i / k B S
34 29 33 nfim k φ i A i / k B S
35 eleq1w k = i k A i A
36 35 anbi2d k = i φ k A φ i A
37 csbeq1a k = i B = i / k B
38 37 eleq1d k = i B S i / k B S
39 36 38 imbi12d k = i φ k A B S φ i A i / k B S
40 34 39 4 chvarfv φ i A i / k B S
41 30 31 37 12 fvmptf i A i / k B S k A B i = i / k B
42 27 40 41 syl2anc φ i A k A B i = i / k B
43 42 disjeq2dv φ Disj i A k A B i Disj i A i / k B
44 nfcv _ i B
45 44 31 37 cbvdisj Disj k A B Disj i A i / k B
46 45 bicomi Disj i A i / k B Disj k A B
47 46 a1i φ Disj i A i / k B Disj k A B
48 43 47 bitrd φ Disj i A k A B i Disj k A B
49 6 48 mpbird φ Disj i A k A B i
50 2 3 22 23 26 49 meadjiunlem φ sum^ M ran k A B = sum^ M k A B
51 44 31 37 cbvmpt k A B = i A i / k B
52 51 coeq2i M k A B = M i A i / k B
53 52 a1i φ M k A B = M i A i / k B
54 eqidd φ i A i / k B = i A i / k B
55 2 3 meaf φ M : S 0 +∞
56 55 feqmptd φ M = y S M y
57 fveq2 y = i / k B M y = M i / k B
58 40 54 56 57 fmptco φ M i A i / k B = i A M i / k B
59 nfcv _ i M B
60 nfcv _ k M
61 60 31 nffv _ k M i / k B
62 37 fveq2d k = i M B = M i / k B
63 59 61 62 cbvmpt k A M B = i A M i / k B
64 63 eqcomi i A M i / k B = k A M B
65 64 a1i φ i A M i / k B = k A M B
66 53 58 65 3eqtrd φ M k A B = k A M B
67 66 fveq2d φ sum^ M k A B = sum^ k A M B
68 50 67 eqtrd φ sum^ M ran k A B = sum^ k A M B
69 11 18 68 3eqtrd φ M k A B = sum^ k A M B