Step |
Hyp |
Ref |
Expression |
1 |
|
meadjiun.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
meadjiun.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
3 |
|
meadjiun.s |
⊢ 𝑆 = dom 𝑀 |
4 |
|
meadjiun.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
5 |
|
meadjiun.a |
⊢ ( 𝜑 → 𝐴 ≼ ω ) |
6 |
|
meadjiun.dj |
⊢ ( 𝜑 → Disj 𝑘 ∈ 𝐴 𝐵 ) |
7 |
4
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐵 ∈ 𝑆 ) ) |
8 |
1 7
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
9 |
|
dfiun3g |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
12 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
13 |
1 12 4
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑆 ) |
14 |
|
1stcrestlem |
⊢ ( 𝐴 ≼ ω → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
16 |
12
|
disjrnmpt2 |
⊢ ( Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑥 ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → Disj 𝑥 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝑥 ) |
18 |
2 3 13 15 17
|
meadjuni |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑀 ↾ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
19 |
|
reldom |
⊢ Rel ≼ |
20 |
|
brrelex1 |
⊢ ( ( Rel ≼ ∧ 𝐴 ≼ ω ) → 𝐴 ∈ V ) |
21 |
19 20
|
mpan |
⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) |
22 |
5 21
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
23 |
1 4 12
|
fmptdf |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑆 ) |
24 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑖 ) ) |
25 |
24
|
neeq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) ≠ ∅ ↔ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑖 ) ≠ ∅ ) ) |
26 |
25
|
cbvrabv |
⊢ { 𝑗 ∈ 𝐴 ∣ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) ≠ ∅ } = { 𝑖 ∈ 𝐴 ∣ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑖 ) ≠ ∅ } |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑖 ∈ 𝐴 ) |
28 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 ∈ 𝐴 |
29 |
1 28
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) |
30 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑖 |
31 |
30
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 |
32 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑆 |
33 |
31 32
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 |
34 |
29 33
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) |
35 |
|
eleq1w |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴 ) ) |
36 |
35
|
anbi2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ) ) |
37 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
38 |
37
|
eleq1d |
⊢ ( 𝑘 = 𝑖 → ( 𝐵 ∈ 𝑆 ↔ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) ) |
39 |
36 38
|
imbi12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) ) ) |
40 |
34 39 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) |
41 |
30 31 37 12
|
fvmptf |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑖 ) = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
42 |
27 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑖 ) = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
43 |
42
|
disjeq2dv |
⊢ ( 𝜑 → ( Disj 𝑖 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑖 ) ↔ Disj 𝑖 ∈ 𝐴 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) |
44 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐵 |
45 |
44 31 37
|
cbvdisj |
⊢ ( Disj 𝑘 ∈ 𝐴 𝐵 ↔ Disj 𝑖 ∈ 𝐴 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
46 |
45
|
bicomi |
⊢ ( Disj 𝑖 ∈ 𝐴 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ↔ Disj 𝑘 ∈ 𝐴 𝐵 ) |
47 |
46
|
a1i |
⊢ ( 𝜑 → ( Disj 𝑖 ∈ 𝐴 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ↔ Disj 𝑘 ∈ 𝐴 𝐵 ) ) |
48 |
43 47
|
bitrd |
⊢ ( 𝜑 → ( Disj 𝑖 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑖 ) ↔ Disj 𝑘 ∈ 𝐴 𝐵 ) ) |
49 |
6 48
|
mpbird |
⊢ ( 𝜑 → Disj 𝑖 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑖 ) ) |
50 |
2 3 22 23 26 49
|
meadjiunlem |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑀 ↾ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) = ( Σ^ ‘ ( 𝑀 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
51 |
44 31 37
|
cbvmpt |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑖 ∈ 𝐴 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
52 |
51
|
coeq2i |
⊢ ( 𝑀 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑀 ∘ ( 𝑖 ∈ 𝐴 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) |
53 |
52
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑀 ∘ ( 𝑖 ∈ 𝐴 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) ) |
54 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐴 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) = ( 𝑖 ∈ 𝐴 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) |
55 |
2 3
|
meaf |
⊢ ( 𝜑 → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
56 |
55
|
feqmptd |
⊢ ( 𝜑 → 𝑀 = ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
57 |
|
fveq2 |
⊢ ( 𝑦 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) |
58 |
40 54 56 57
|
fmptco |
⊢ ( 𝜑 → ( 𝑀 ∘ ( 𝑖 ∈ 𝐴 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) = ( 𝑖 ∈ 𝐴 ↦ ( 𝑀 ‘ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) ) |
59 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑀 ‘ 𝐵 ) |
60 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑀 |
61 |
60 31
|
nffv |
⊢ Ⅎ 𝑘 ( 𝑀 ‘ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
62 |
37
|
fveq2d |
⊢ ( 𝑘 = 𝑖 → ( 𝑀 ‘ 𝐵 ) = ( 𝑀 ‘ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) |
63 |
59 61 62
|
cbvmpt |
⊢ ( 𝑘 ∈ 𝐴 ↦ ( 𝑀 ‘ 𝐵 ) ) = ( 𝑖 ∈ 𝐴 ↦ ( 𝑀 ‘ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) |
64 |
63
|
eqcomi |
⊢ ( 𝑖 ∈ 𝐴 ↦ ( 𝑀 ‘ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝑀 ‘ 𝐵 ) ) |
65 |
64
|
a1i |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐴 ↦ ( 𝑀 ‘ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝑀 ‘ 𝐵 ) ) ) |
66 |
53 58 65
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑀 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝑀 ‘ 𝐵 ) ) ) |
67 |
66
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑀 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝑀 ‘ 𝐵 ) ) ) ) |
68 |
50 67
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑀 ↾ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝑀 ‘ 𝐵 ) ) ) ) |
69 |
11 18 68
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝑀 ‘ 𝐵 ) ) ) ) |