Step |
Hyp |
Ref |
Expression |
1 |
|
meadjiun.1 |
|- F/ k ph |
2 |
|
meadjiun.m |
|- ( ph -> M e. Meas ) |
3 |
|
meadjiun.s |
|- S = dom M |
4 |
|
meadjiun.b |
|- ( ( ph /\ k e. A ) -> B e. S ) |
5 |
|
meadjiun.a |
|- ( ph -> A ~<_ _om ) |
6 |
|
meadjiun.dj |
|- ( ph -> Disj_ k e. A B ) |
7 |
4
|
ex |
|- ( ph -> ( k e. A -> B e. S ) ) |
8 |
1 7
|
ralrimi |
|- ( ph -> A. k e. A B e. S ) |
9 |
|
dfiun3g |
|- ( A. k e. A B e. S -> U_ k e. A B = U. ran ( k e. A |-> B ) ) |
10 |
8 9
|
syl |
|- ( ph -> U_ k e. A B = U. ran ( k e. A |-> B ) ) |
11 |
10
|
fveq2d |
|- ( ph -> ( M ` U_ k e. A B ) = ( M ` U. ran ( k e. A |-> B ) ) ) |
12 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
13 |
1 12 4
|
rnmptssd |
|- ( ph -> ran ( k e. A |-> B ) C_ S ) |
14 |
|
1stcrestlem |
|- ( A ~<_ _om -> ran ( k e. A |-> B ) ~<_ _om ) |
15 |
5 14
|
syl |
|- ( ph -> ran ( k e. A |-> B ) ~<_ _om ) |
16 |
12
|
disjrnmpt2 |
|- ( Disj_ k e. A B -> Disj_ x e. ran ( k e. A |-> B ) x ) |
17 |
6 16
|
syl |
|- ( ph -> Disj_ x e. ran ( k e. A |-> B ) x ) |
18 |
2 3 13 15 17
|
meadjuni |
|- ( ph -> ( M ` U. ran ( k e. A |-> B ) ) = ( sum^ ` ( M |` ran ( k e. A |-> B ) ) ) ) |
19 |
|
reldom |
|- Rel ~<_ |
20 |
|
brrelex1 |
|- ( ( Rel ~<_ /\ A ~<_ _om ) -> A e. _V ) |
21 |
19 20
|
mpan |
|- ( A ~<_ _om -> A e. _V ) |
22 |
5 21
|
syl |
|- ( ph -> A e. _V ) |
23 |
1 4 12
|
fmptdf |
|- ( ph -> ( k e. A |-> B ) : A --> S ) |
24 |
|
fveq2 |
|- ( j = i -> ( ( k e. A |-> B ) ` j ) = ( ( k e. A |-> B ) ` i ) ) |
25 |
24
|
neeq1d |
|- ( j = i -> ( ( ( k e. A |-> B ) ` j ) =/= (/) <-> ( ( k e. A |-> B ) ` i ) =/= (/) ) ) |
26 |
25
|
cbvrabv |
|- { j e. A | ( ( k e. A |-> B ) ` j ) =/= (/) } = { i e. A | ( ( k e. A |-> B ) ` i ) =/= (/) } |
27 |
|
simpr |
|- ( ( ph /\ i e. A ) -> i e. A ) |
28 |
|
nfv |
|- F/ k i e. A |
29 |
1 28
|
nfan |
|- F/ k ( ph /\ i e. A ) |
30 |
|
nfcv |
|- F/_ k i |
31 |
30
|
nfcsb1 |
|- F/_ k [_ i / k ]_ B |
32 |
|
nfcv |
|- F/_ k S |
33 |
31 32
|
nfel |
|- F/ k [_ i / k ]_ B e. S |
34 |
29 33
|
nfim |
|- F/ k ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. S ) |
35 |
|
eleq1w |
|- ( k = i -> ( k e. A <-> i e. A ) ) |
36 |
35
|
anbi2d |
|- ( k = i -> ( ( ph /\ k e. A ) <-> ( ph /\ i e. A ) ) ) |
37 |
|
csbeq1a |
|- ( k = i -> B = [_ i / k ]_ B ) |
38 |
37
|
eleq1d |
|- ( k = i -> ( B e. S <-> [_ i / k ]_ B e. S ) ) |
39 |
36 38
|
imbi12d |
|- ( k = i -> ( ( ( ph /\ k e. A ) -> B e. S ) <-> ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. S ) ) ) |
40 |
34 39 4
|
chvarfv |
|- ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. S ) |
41 |
30 31 37 12
|
fvmptf |
|- ( ( i e. A /\ [_ i / k ]_ B e. S ) -> ( ( k e. A |-> B ) ` i ) = [_ i / k ]_ B ) |
42 |
27 40 41
|
syl2anc |
|- ( ( ph /\ i e. A ) -> ( ( k e. A |-> B ) ` i ) = [_ i / k ]_ B ) |
43 |
42
|
disjeq2dv |
|- ( ph -> ( Disj_ i e. A ( ( k e. A |-> B ) ` i ) <-> Disj_ i e. A [_ i / k ]_ B ) ) |
44 |
|
nfcv |
|- F/_ i B |
45 |
44 31 37
|
cbvdisj |
|- ( Disj_ k e. A B <-> Disj_ i e. A [_ i / k ]_ B ) |
46 |
45
|
bicomi |
|- ( Disj_ i e. A [_ i / k ]_ B <-> Disj_ k e. A B ) |
47 |
46
|
a1i |
|- ( ph -> ( Disj_ i e. A [_ i / k ]_ B <-> Disj_ k e. A B ) ) |
48 |
43 47
|
bitrd |
|- ( ph -> ( Disj_ i e. A ( ( k e. A |-> B ) ` i ) <-> Disj_ k e. A B ) ) |
49 |
6 48
|
mpbird |
|- ( ph -> Disj_ i e. A ( ( k e. A |-> B ) ` i ) ) |
50 |
2 3 22 23 26 49
|
meadjiunlem |
|- ( ph -> ( sum^ ` ( M |` ran ( k e. A |-> B ) ) ) = ( sum^ ` ( M o. ( k e. A |-> B ) ) ) ) |
51 |
44 31 37
|
cbvmpt |
|- ( k e. A |-> B ) = ( i e. A |-> [_ i / k ]_ B ) |
52 |
51
|
coeq2i |
|- ( M o. ( k e. A |-> B ) ) = ( M o. ( i e. A |-> [_ i / k ]_ B ) ) |
53 |
52
|
a1i |
|- ( ph -> ( M o. ( k e. A |-> B ) ) = ( M o. ( i e. A |-> [_ i / k ]_ B ) ) ) |
54 |
|
eqidd |
|- ( ph -> ( i e. A |-> [_ i / k ]_ B ) = ( i e. A |-> [_ i / k ]_ B ) ) |
55 |
2 3
|
meaf |
|- ( ph -> M : S --> ( 0 [,] +oo ) ) |
56 |
55
|
feqmptd |
|- ( ph -> M = ( y e. S |-> ( M ` y ) ) ) |
57 |
|
fveq2 |
|- ( y = [_ i / k ]_ B -> ( M ` y ) = ( M ` [_ i / k ]_ B ) ) |
58 |
40 54 56 57
|
fmptco |
|- ( ph -> ( M o. ( i e. A |-> [_ i / k ]_ B ) ) = ( i e. A |-> ( M ` [_ i / k ]_ B ) ) ) |
59 |
|
nfcv |
|- F/_ i ( M ` B ) |
60 |
|
nfcv |
|- F/_ k M |
61 |
60 31
|
nffv |
|- F/_ k ( M ` [_ i / k ]_ B ) |
62 |
37
|
fveq2d |
|- ( k = i -> ( M ` B ) = ( M ` [_ i / k ]_ B ) ) |
63 |
59 61 62
|
cbvmpt |
|- ( k e. A |-> ( M ` B ) ) = ( i e. A |-> ( M ` [_ i / k ]_ B ) ) |
64 |
63
|
eqcomi |
|- ( i e. A |-> ( M ` [_ i / k ]_ B ) ) = ( k e. A |-> ( M ` B ) ) |
65 |
64
|
a1i |
|- ( ph -> ( i e. A |-> ( M ` [_ i / k ]_ B ) ) = ( k e. A |-> ( M ` B ) ) ) |
66 |
53 58 65
|
3eqtrd |
|- ( ph -> ( M o. ( k e. A |-> B ) ) = ( k e. A |-> ( M ` B ) ) ) |
67 |
66
|
fveq2d |
|- ( ph -> ( sum^ ` ( M o. ( k e. A |-> B ) ) ) = ( sum^ ` ( k e. A |-> ( M ` B ) ) ) ) |
68 |
50 67
|
eqtrd |
|- ( ph -> ( sum^ ` ( M |` ran ( k e. A |-> B ) ) ) = ( sum^ ` ( k e. A |-> ( M ` B ) ) ) ) |
69 |
11 18 68
|
3eqtrd |
|- ( ph -> ( M ` U_ k e. A B ) = ( sum^ ` ( k e. A |-> ( M ` B ) ) ) ) |