| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meadjiunlem.f |
|- ( ph -> M e. Meas ) |
| 2 |
|
meadjiunlem.3 |
|- S = dom M |
| 3 |
|
meadjiunlem.x |
|- ( ph -> X e. V ) |
| 4 |
|
meadjiunlem.g |
|- ( ph -> G : X --> S ) |
| 5 |
|
meadjiunlem.y |
|- Y = { i e. X | ( G ` i ) =/= (/) } |
| 6 |
|
meadjiunlem.dj |
|- ( ph -> Disj_ i e. X ( G ` i ) ) |
| 7 |
|
nfv |
|- F/ k ph |
| 8 |
4 3
|
jca |
|- ( ph -> ( G : X --> S /\ X e. V ) ) |
| 9 |
|
fex |
|- ( ( G : X --> S /\ X e. V ) -> G e. _V ) |
| 10 |
|
rnexg |
|- ( G e. _V -> ran G e. _V ) |
| 11 |
8 9 10
|
3syl |
|- ( ph -> ran G e. _V ) |
| 12 |
|
difssd |
|- ( ph -> ( ran G \ { (/) } ) C_ ran G ) |
| 13 |
1 2
|
meaf |
|- ( ph -> M : S --> ( 0 [,] +oo ) ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> M : S --> ( 0 [,] +oo ) ) |
| 15 |
4
|
frnd |
|- ( ph -> ran G C_ S ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> ran G C_ S ) |
| 17 |
12
|
sselda |
|- ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> k e. ran G ) |
| 18 |
16 17
|
sseldd |
|- ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> k e. S ) |
| 19 |
14 18
|
ffvelcdmd |
|- ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> ( M ` k ) e. ( 0 [,] +oo ) ) |
| 20 |
|
simpl |
|- ( ( ph /\ k e. ( ran G \ ( ran G \ { (/) } ) ) ) -> ph ) |
| 21 |
|
id |
|- ( k e. ( ran G \ ( ran G \ { (/) } ) ) -> k e. ( ran G \ ( ran G \ { (/) } ) ) ) |
| 22 |
|
dfin4 |
|- ( ran G i^i { (/) } ) = ( ran G \ ( ran G \ { (/) } ) ) |
| 23 |
22
|
eqcomi |
|- ( ran G \ ( ran G \ { (/) } ) ) = ( ran G i^i { (/) } ) |
| 24 |
21 23
|
eleqtrdi |
|- ( k e. ( ran G \ ( ran G \ { (/) } ) ) -> k e. ( ran G i^i { (/) } ) ) |
| 25 |
|
elinel2 |
|- ( k e. ( ran G i^i { (/) } ) -> k e. { (/) } ) |
| 26 |
|
elsni |
|- ( k e. { (/) } -> k = (/) ) |
| 27 |
25 26
|
syl |
|- ( k e. ( ran G i^i { (/) } ) -> k = (/) ) |
| 28 |
24 27
|
syl |
|- ( k e. ( ran G \ ( ran G \ { (/) } ) ) -> k = (/) ) |
| 29 |
28
|
adantl |
|- ( ( ph /\ k e. ( ran G \ ( ran G \ { (/) } ) ) ) -> k = (/) ) |
| 30 |
|
simpr |
|- ( ( ph /\ k = (/) ) -> k = (/) ) |
| 31 |
30
|
fveq2d |
|- ( ( ph /\ k = (/) ) -> ( M ` k ) = ( M ` (/) ) ) |
| 32 |
1
|
mea0 |
|- ( ph -> ( M ` (/) ) = 0 ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ k = (/) ) -> ( M ` (/) ) = 0 ) |
| 34 |
31 33
|
eqtrd |
|- ( ( ph /\ k = (/) ) -> ( M ` k ) = 0 ) |
| 35 |
20 29 34
|
syl2anc |
|- ( ( ph /\ k e. ( ran G \ ( ran G \ { (/) } ) ) ) -> ( M ` k ) = 0 ) |
| 36 |
7 11 12 19 35
|
sge0ss |
|- ( ph -> ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) = ( sum^ ` ( k e. ran G |-> ( M ` k ) ) ) ) |
| 37 |
36
|
eqcomd |
|- ( ph -> ( sum^ ` ( k e. ran G |-> ( M ` k ) ) ) = ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) ) |
| 38 |
13 15
|
feqresmpt |
|- ( ph -> ( M |` ran G ) = ( k e. ran G |-> ( M ` k ) ) ) |
| 39 |
38
|
fveq2d |
|- ( ph -> ( sum^ ` ( M |` ran G ) ) = ( sum^ ` ( k e. ran G |-> ( M ` k ) ) ) ) |
| 40 |
4
|
ffvelcdmda |
|- ( ( ph /\ j e. X ) -> ( G ` j ) e. S ) |
| 41 |
4
|
feqmptd |
|- ( ph -> G = ( j e. X |-> ( G ` j ) ) ) |
| 42 |
13
|
feqmptd |
|- ( ph -> M = ( k e. S |-> ( M ` k ) ) ) |
| 43 |
|
fveq2 |
|- ( k = ( G ` j ) -> ( M ` k ) = ( M ` ( G ` j ) ) ) |
| 44 |
40 41 42 43
|
fmptco |
|- ( ph -> ( M o. G ) = ( j e. X |-> ( M ` ( G ` j ) ) ) ) |
| 45 |
44
|
fveq2d |
|- ( ph -> ( sum^ ` ( M o. G ) ) = ( sum^ ` ( j e. X |-> ( M ` ( G ` j ) ) ) ) ) |
| 46 |
|
nfv |
|- F/ j ph |
| 47 |
|
ssrab2 |
|- { i e. X | ( G ` i ) =/= (/) } C_ X |
| 48 |
47
|
a1i |
|- ( ph -> { i e. X | ( G ` i ) =/= (/) } C_ X ) |
| 49 |
5 48
|
eqsstrid |
|- ( ph -> Y C_ X ) |
| 50 |
13
|
adantr |
|- ( ( ph /\ j e. Y ) -> M : S --> ( 0 [,] +oo ) ) |
| 51 |
4
|
adantr |
|- ( ( ph /\ j e. Y ) -> G : X --> S ) |
| 52 |
49
|
sselda |
|- ( ( ph /\ j e. Y ) -> j e. X ) |
| 53 |
51 52
|
ffvelcdmd |
|- ( ( ph /\ j e. Y ) -> ( G ` j ) e. S ) |
| 54 |
50 53
|
ffvelcdmd |
|- ( ( ph /\ j e. Y ) -> ( M ` ( G ` j ) ) e. ( 0 [,] +oo ) ) |
| 55 |
|
eldifi |
|- ( j e. ( X \ Y ) -> j e. X ) |
| 56 |
55
|
ad2antlr |
|- ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> j e. X ) |
| 57 |
|
fveq2 |
|- ( ( G ` j ) = (/) -> ( M ` ( G ` j ) ) = ( M ` (/) ) ) |
| 58 |
57
|
adantl |
|- ( ( ph /\ ( G ` j ) = (/) ) -> ( M ` ( G ` j ) ) = ( M ` (/) ) ) |
| 59 |
1
|
adantr |
|- ( ( ph /\ ( G ` j ) = (/) ) -> M e. Meas ) |
| 60 |
59
|
mea0 |
|- ( ( ph /\ ( G ` j ) = (/) ) -> ( M ` (/) ) = 0 ) |
| 61 |
58 60
|
eqtrd |
|- ( ( ph /\ ( G ` j ) = (/) ) -> ( M ` ( G ` j ) ) = 0 ) |
| 62 |
61
|
ad4ant14 |
|- ( ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) /\ ( G ` j ) = (/) ) -> ( M ` ( G ` j ) ) = 0 ) |
| 63 |
|
neneq |
|- ( ( M ` ( G ` j ) ) =/= 0 -> -. ( M ` ( G ` j ) ) = 0 ) |
| 64 |
63
|
ad2antlr |
|- ( ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) /\ ( G ` j ) = (/) ) -> -. ( M ` ( G ` j ) ) = 0 ) |
| 65 |
62 64
|
pm2.65da |
|- ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> -. ( G ` j ) = (/) ) |
| 66 |
65
|
neqned |
|- ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> ( G ` j ) =/= (/) ) |
| 67 |
56 66
|
jca |
|- ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> ( j e. X /\ ( G ` j ) =/= (/) ) ) |
| 68 |
|
fveq2 |
|- ( i = j -> ( G ` i ) = ( G ` j ) ) |
| 69 |
68
|
neeq1d |
|- ( i = j -> ( ( G ` i ) =/= (/) <-> ( G ` j ) =/= (/) ) ) |
| 70 |
69
|
elrab |
|- ( j e. { i e. X | ( G ` i ) =/= (/) } <-> ( j e. X /\ ( G ` j ) =/= (/) ) ) |
| 71 |
67 70
|
sylibr |
|- ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> j e. { i e. X | ( G ` i ) =/= (/) } ) |
| 72 |
71 5
|
eleqtrrdi |
|- ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> j e. Y ) |
| 73 |
|
eldifn |
|- ( j e. ( X \ Y ) -> -. j e. Y ) |
| 74 |
73
|
ad2antlr |
|- ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> -. j e. Y ) |
| 75 |
72 74
|
pm2.65da |
|- ( ( ph /\ j e. ( X \ Y ) ) -> -. ( M ` ( G ` j ) ) =/= 0 ) |
| 76 |
|
nne |
|- ( -. ( M ` ( G ` j ) ) =/= 0 <-> ( M ` ( G ` j ) ) = 0 ) |
| 77 |
75 76
|
sylib |
|- ( ( ph /\ j e. ( X \ Y ) ) -> ( M ` ( G ` j ) ) = 0 ) |
| 78 |
46 3 49 54 77
|
sge0ss |
|- ( ph -> ( sum^ ` ( j e. Y |-> ( M ` ( G ` j ) ) ) ) = ( sum^ ` ( j e. X |-> ( M ` ( G ` j ) ) ) ) ) |
| 79 |
78
|
eqcomd |
|- ( ph -> ( sum^ ` ( j e. X |-> ( M ` ( G ` j ) ) ) ) = ( sum^ ` ( j e. Y |-> ( M ` ( G ` j ) ) ) ) ) |
| 80 |
3 49
|
ssexd |
|- ( ph -> Y e. _V ) |
| 81 |
|
nfv |
|- F/ i ph |
| 82 |
|
eqid |
|- ( i e. Y |-> ( G ` i ) ) = ( i e. Y |-> ( G ` i ) ) |
| 83 |
4
|
ffnd |
|- ( ph -> G Fn X ) |
| 84 |
|
dffn3 |
|- ( G Fn X <-> G : X --> ran G ) |
| 85 |
83 84
|
sylib |
|- ( ph -> G : X --> ran G ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ i e. Y ) -> G : X --> ran G ) |
| 87 |
49
|
sselda |
|- ( ( ph /\ i e. Y ) -> i e. X ) |
| 88 |
86 87
|
ffvelcdmd |
|- ( ( ph /\ i e. Y ) -> ( G ` i ) e. ran G ) |
| 89 |
5
|
eleq2i |
|- ( i e. Y <-> i e. { i e. X | ( G ` i ) =/= (/) } ) |
| 90 |
|
rabid |
|- ( i e. { i e. X | ( G ` i ) =/= (/) } <-> ( i e. X /\ ( G ` i ) =/= (/) ) ) |
| 91 |
89 90
|
bitri |
|- ( i e. Y <-> ( i e. X /\ ( G ` i ) =/= (/) ) ) |
| 92 |
91
|
biimpi |
|- ( i e. Y -> ( i e. X /\ ( G ` i ) =/= (/) ) ) |
| 93 |
92
|
simprd |
|- ( i e. Y -> ( G ` i ) =/= (/) ) |
| 94 |
93
|
adantl |
|- ( ( ph /\ i e. Y ) -> ( G ` i ) =/= (/) ) |
| 95 |
|
nelsn |
|- ( ( G ` i ) =/= (/) -> -. ( G ` i ) e. { (/) } ) |
| 96 |
94 95
|
syl |
|- ( ( ph /\ i e. Y ) -> -. ( G ` i ) e. { (/) } ) |
| 97 |
88 96
|
eldifd |
|- ( ( ph /\ i e. Y ) -> ( G ` i ) e. ( ran G \ { (/) } ) ) |
| 98 |
|
disjss1 |
|- ( Y C_ X -> ( Disj_ i e. X ( G ` i ) -> Disj_ i e. Y ( G ` i ) ) ) |
| 99 |
49 6 98
|
sylc |
|- ( ph -> Disj_ i e. Y ( G ` i ) ) |
| 100 |
81 82 97 94 99
|
disjf1 |
|- ( ph -> ( i e. Y |-> ( G ` i ) ) : Y -1-1-> ( ran G \ { (/) } ) ) |
| 101 |
4 49
|
feqresmpt |
|- ( ph -> ( G |` Y ) = ( i e. Y |-> ( G ` i ) ) ) |
| 102 |
|
f1eq1 |
|- ( ( G |` Y ) = ( i e. Y |-> ( G ` i ) ) -> ( ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) <-> ( i e. Y |-> ( G ` i ) ) : Y -1-1-> ( ran G \ { (/) } ) ) ) |
| 103 |
101 102
|
syl |
|- ( ph -> ( ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) <-> ( i e. Y |-> ( G ` i ) ) : Y -1-1-> ( ran G \ { (/) } ) ) ) |
| 104 |
100 103
|
mpbird |
|- ( ph -> ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) ) |
| 105 |
101
|
rneqd |
|- ( ph -> ran ( G |` Y ) = ran ( i e. Y |-> ( G ` i ) ) ) |
| 106 |
97
|
ralrimiva |
|- ( ph -> A. i e. Y ( G ` i ) e. ( ran G \ { (/) } ) ) |
| 107 |
82
|
rnmptss |
|- ( A. i e. Y ( G ` i ) e. ( ran G \ { (/) } ) -> ran ( i e. Y |-> ( G ` i ) ) C_ ( ran G \ { (/) } ) ) |
| 108 |
106 107
|
syl |
|- ( ph -> ran ( i e. Y |-> ( G ` i ) ) C_ ( ran G \ { (/) } ) ) |
| 109 |
105 108
|
eqsstrd |
|- ( ph -> ran ( G |` Y ) C_ ( ran G \ { (/) } ) ) |
| 110 |
|
simpl |
|- ( ( ph /\ x e. ( ran G \ { (/) } ) ) -> ph ) |
| 111 |
|
eldifi |
|- ( x e. ( ran G \ { (/) } ) -> x e. ran G ) |
| 112 |
111
|
adantl |
|- ( ( ph /\ x e. ( ran G \ { (/) } ) ) -> x e. ran G ) |
| 113 |
|
eldifsni |
|- ( x e. ( ran G \ { (/) } ) -> x =/= (/) ) |
| 114 |
113
|
adantl |
|- ( ( ph /\ x e. ( ran G \ { (/) } ) ) -> x =/= (/) ) |
| 115 |
|
simpr |
|- ( ( ph /\ x e. ran G ) -> x e. ran G ) |
| 116 |
|
fvelrnb |
|- ( G Fn X -> ( x e. ran G <-> E. i e. X ( G ` i ) = x ) ) |
| 117 |
83 116
|
syl |
|- ( ph -> ( x e. ran G <-> E. i e. X ( G ` i ) = x ) ) |
| 118 |
117
|
adantr |
|- ( ( ph /\ x e. ran G ) -> ( x e. ran G <-> E. i e. X ( G ` i ) = x ) ) |
| 119 |
115 118
|
mpbid |
|- ( ( ph /\ x e. ran G ) -> E. i e. X ( G ` i ) = x ) |
| 120 |
119
|
3adant3 |
|- ( ( ph /\ x e. ran G /\ x =/= (/) ) -> E. i e. X ( G ` i ) = x ) |
| 121 |
|
id |
|- ( ( G ` i ) = x -> ( G ` i ) = x ) |
| 122 |
121
|
eqcomd |
|- ( ( G ` i ) = x -> x = ( G ` i ) ) |
| 123 |
122
|
3ad2ant3 |
|- ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> x = ( G ` i ) ) |
| 124 |
|
simp1l |
|- ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> ph ) |
| 125 |
|
simp2 |
|- ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> i e. X ) |
| 126 |
|
simpr |
|- ( ( x =/= (/) /\ ( G ` i ) = x ) -> ( G ` i ) = x ) |
| 127 |
|
simpl |
|- ( ( x =/= (/) /\ ( G ` i ) = x ) -> x =/= (/) ) |
| 128 |
126 127
|
eqnetrd |
|- ( ( x =/= (/) /\ ( G ` i ) = x ) -> ( G ` i ) =/= (/) ) |
| 129 |
128
|
adantll |
|- ( ( ( ph /\ x =/= (/) ) /\ ( G ` i ) = x ) -> ( G ` i ) =/= (/) ) |
| 130 |
129
|
3adant2 |
|- ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> ( G ` i ) =/= (/) ) |
| 131 |
91
|
biimpri |
|- ( ( i e. X /\ ( G ` i ) =/= (/) ) -> i e. Y ) |
| 132 |
|
fvexd |
|- ( ( i e. X /\ ( G ` i ) =/= (/) ) -> ( G ` i ) e. _V ) |
| 133 |
82
|
elrnmpt1 |
|- ( ( i e. Y /\ ( G ` i ) e. _V ) -> ( G ` i ) e. ran ( i e. Y |-> ( G ` i ) ) ) |
| 134 |
131 132 133
|
syl2anc |
|- ( ( i e. X /\ ( G ` i ) =/= (/) ) -> ( G ` i ) e. ran ( i e. Y |-> ( G ` i ) ) ) |
| 135 |
134
|
3adant1 |
|- ( ( ph /\ i e. X /\ ( G ` i ) =/= (/) ) -> ( G ` i ) e. ran ( i e. Y |-> ( G ` i ) ) ) |
| 136 |
105
|
eqcomd |
|- ( ph -> ran ( i e. Y |-> ( G ` i ) ) = ran ( G |` Y ) ) |
| 137 |
136
|
3ad2ant1 |
|- ( ( ph /\ i e. X /\ ( G ` i ) =/= (/) ) -> ran ( i e. Y |-> ( G ` i ) ) = ran ( G |` Y ) ) |
| 138 |
135 137
|
eleqtrd |
|- ( ( ph /\ i e. X /\ ( G ` i ) =/= (/) ) -> ( G ` i ) e. ran ( G |` Y ) ) |
| 139 |
124 125 130 138
|
syl3anc |
|- ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> ( G ` i ) e. ran ( G |` Y ) ) |
| 140 |
123 139
|
eqeltrd |
|- ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> x e. ran ( G |` Y ) ) |
| 141 |
140
|
3exp |
|- ( ( ph /\ x =/= (/) ) -> ( i e. X -> ( ( G ` i ) = x -> x e. ran ( G |` Y ) ) ) ) |
| 142 |
141
|
rexlimdv |
|- ( ( ph /\ x =/= (/) ) -> ( E. i e. X ( G ` i ) = x -> x e. ran ( G |` Y ) ) ) |
| 143 |
142
|
3adant2 |
|- ( ( ph /\ x e. ran G /\ x =/= (/) ) -> ( E. i e. X ( G ` i ) = x -> x e. ran ( G |` Y ) ) ) |
| 144 |
120 143
|
mpd |
|- ( ( ph /\ x e. ran G /\ x =/= (/) ) -> x e. ran ( G |` Y ) ) |
| 145 |
110 112 114 144
|
syl3anc |
|- ( ( ph /\ x e. ( ran G \ { (/) } ) ) -> x e. ran ( G |` Y ) ) |
| 146 |
109 145
|
eqelssd |
|- ( ph -> ran ( G |` Y ) = ( ran G \ { (/) } ) ) |
| 147 |
104 146
|
jca |
|- ( ph -> ( ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) /\ ran ( G |` Y ) = ( ran G \ { (/) } ) ) ) |
| 148 |
|
dff1o5 |
|- ( ( G |` Y ) : Y -1-1-onto-> ( ran G \ { (/) } ) <-> ( ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) /\ ran ( G |` Y ) = ( ran G \ { (/) } ) ) ) |
| 149 |
147 148
|
sylibr |
|- ( ph -> ( G |` Y ) : Y -1-1-onto-> ( ran G \ { (/) } ) ) |
| 150 |
|
fvres |
|- ( j e. Y -> ( ( G |` Y ) ` j ) = ( G ` j ) ) |
| 151 |
150
|
adantl |
|- ( ( ph /\ j e. Y ) -> ( ( G |` Y ) ` j ) = ( G ` j ) ) |
| 152 |
7 46 43 80 149 151 19
|
sge0f1o |
|- ( ph -> ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) = ( sum^ ` ( j e. Y |-> ( M ` ( G ` j ) ) ) ) ) |
| 153 |
152
|
eqcomd |
|- ( ph -> ( sum^ ` ( j e. Y |-> ( M ` ( G ` j ) ) ) ) = ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) ) |
| 154 |
45 79 153
|
3eqtrd |
|- ( ph -> ( sum^ ` ( M o. G ) ) = ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) ) |
| 155 |
37 39 154
|
3eqtr4d |
|- ( ph -> ( sum^ ` ( M |` ran G ) ) = ( sum^ ` ( M o. G ) ) ) |