| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meadjiunlem.f |  |-  ( ph -> M e. Meas ) | 
						
							| 2 |  | meadjiunlem.3 |  |-  S = dom M | 
						
							| 3 |  | meadjiunlem.x |  |-  ( ph -> X e. V ) | 
						
							| 4 |  | meadjiunlem.g |  |-  ( ph -> G : X --> S ) | 
						
							| 5 |  | meadjiunlem.y |  |-  Y = { i e. X | ( G ` i ) =/= (/) } | 
						
							| 6 |  | meadjiunlem.dj |  |-  ( ph -> Disj_ i e. X ( G ` i ) ) | 
						
							| 7 |  | nfv |  |-  F/ k ph | 
						
							| 8 | 4 3 | jca |  |-  ( ph -> ( G : X --> S /\ X e. V ) ) | 
						
							| 9 |  | fex |  |-  ( ( G : X --> S /\ X e. V ) -> G e. _V ) | 
						
							| 10 |  | rnexg |  |-  ( G e. _V -> ran G e. _V ) | 
						
							| 11 | 8 9 10 | 3syl |  |-  ( ph -> ran G e. _V ) | 
						
							| 12 |  | difssd |  |-  ( ph -> ( ran G \ { (/) } ) C_ ran G ) | 
						
							| 13 | 1 2 | meaf |  |-  ( ph -> M : S --> ( 0 [,] +oo ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> M : S --> ( 0 [,] +oo ) ) | 
						
							| 15 | 4 | frnd |  |-  ( ph -> ran G C_ S ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> ran G C_ S ) | 
						
							| 17 | 12 | sselda |  |-  ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> k e. ran G ) | 
						
							| 18 | 16 17 | sseldd |  |-  ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> k e. S ) | 
						
							| 19 | 14 18 | ffvelcdmd |  |-  ( ( ph /\ k e. ( ran G \ { (/) } ) ) -> ( M ` k ) e. ( 0 [,] +oo ) ) | 
						
							| 20 |  | simpl |  |-  ( ( ph /\ k e. ( ran G \ ( ran G \ { (/) } ) ) ) -> ph ) | 
						
							| 21 |  | id |  |-  ( k e. ( ran G \ ( ran G \ { (/) } ) ) -> k e. ( ran G \ ( ran G \ { (/) } ) ) ) | 
						
							| 22 |  | dfin4 |  |-  ( ran G i^i { (/) } ) = ( ran G \ ( ran G \ { (/) } ) ) | 
						
							| 23 | 22 | eqcomi |  |-  ( ran G \ ( ran G \ { (/) } ) ) = ( ran G i^i { (/) } ) | 
						
							| 24 | 21 23 | eleqtrdi |  |-  ( k e. ( ran G \ ( ran G \ { (/) } ) ) -> k e. ( ran G i^i { (/) } ) ) | 
						
							| 25 |  | elinel2 |  |-  ( k e. ( ran G i^i { (/) } ) -> k e. { (/) } ) | 
						
							| 26 |  | elsni |  |-  ( k e. { (/) } -> k = (/) ) | 
						
							| 27 | 25 26 | syl |  |-  ( k e. ( ran G i^i { (/) } ) -> k = (/) ) | 
						
							| 28 | 24 27 | syl |  |-  ( k e. ( ran G \ ( ran G \ { (/) } ) ) -> k = (/) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ph /\ k e. ( ran G \ ( ran G \ { (/) } ) ) ) -> k = (/) ) | 
						
							| 30 |  | simpr |  |-  ( ( ph /\ k = (/) ) -> k = (/) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ( ph /\ k = (/) ) -> ( M ` k ) = ( M ` (/) ) ) | 
						
							| 32 | 1 | mea0 |  |-  ( ph -> ( M ` (/) ) = 0 ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ k = (/) ) -> ( M ` (/) ) = 0 ) | 
						
							| 34 | 31 33 | eqtrd |  |-  ( ( ph /\ k = (/) ) -> ( M ` k ) = 0 ) | 
						
							| 35 | 20 29 34 | syl2anc |  |-  ( ( ph /\ k e. ( ran G \ ( ran G \ { (/) } ) ) ) -> ( M ` k ) = 0 ) | 
						
							| 36 | 7 11 12 19 35 | sge0ss |  |-  ( ph -> ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) = ( sum^ ` ( k e. ran G |-> ( M ` k ) ) ) ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ph -> ( sum^ ` ( k e. ran G |-> ( M ` k ) ) ) = ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) ) | 
						
							| 38 | 13 15 | feqresmpt |  |-  ( ph -> ( M |` ran G ) = ( k e. ran G |-> ( M ` k ) ) ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ph -> ( sum^ ` ( M |` ran G ) ) = ( sum^ ` ( k e. ran G |-> ( M ` k ) ) ) ) | 
						
							| 40 | 4 | ffvelcdmda |  |-  ( ( ph /\ j e. X ) -> ( G ` j ) e. S ) | 
						
							| 41 | 4 | feqmptd |  |-  ( ph -> G = ( j e. X |-> ( G ` j ) ) ) | 
						
							| 42 | 13 | feqmptd |  |-  ( ph -> M = ( k e. S |-> ( M ` k ) ) ) | 
						
							| 43 |  | fveq2 |  |-  ( k = ( G ` j ) -> ( M ` k ) = ( M ` ( G ` j ) ) ) | 
						
							| 44 | 40 41 42 43 | fmptco |  |-  ( ph -> ( M o. G ) = ( j e. X |-> ( M ` ( G ` j ) ) ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ph -> ( sum^ ` ( M o. G ) ) = ( sum^ ` ( j e. X |-> ( M ` ( G ` j ) ) ) ) ) | 
						
							| 46 |  | nfv |  |-  F/ j ph | 
						
							| 47 |  | ssrab2 |  |-  { i e. X | ( G ` i ) =/= (/) } C_ X | 
						
							| 48 | 47 | a1i |  |-  ( ph -> { i e. X | ( G ` i ) =/= (/) } C_ X ) | 
						
							| 49 | 5 48 | eqsstrid |  |-  ( ph -> Y C_ X ) | 
						
							| 50 | 13 | adantr |  |-  ( ( ph /\ j e. Y ) -> M : S --> ( 0 [,] +oo ) ) | 
						
							| 51 | 4 | adantr |  |-  ( ( ph /\ j e. Y ) -> G : X --> S ) | 
						
							| 52 | 49 | sselda |  |-  ( ( ph /\ j e. Y ) -> j e. X ) | 
						
							| 53 | 51 52 | ffvelcdmd |  |-  ( ( ph /\ j e. Y ) -> ( G ` j ) e. S ) | 
						
							| 54 | 50 53 | ffvelcdmd |  |-  ( ( ph /\ j e. Y ) -> ( M ` ( G ` j ) ) e. ( 0 [,] +oo ) ) | 
						
							| 55 |  | eldifi |  |-  ( j e. ( X \ Y ) -> j e. X ) | 
						
							| 56 | 55 | ad2antlr |  |-  ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> j e. X ) | 
						
							| 57 |  | fveq2 |  |-  ( ( G ` j ) = (/) -> ( M ` ( G ` j ) ) = ( M ` (/) ) ) | 
						
							| 58 | 57 | adantl |  |-  ( ( ph /\ ( G ` j ) = (/) ) -> ( M ` ( G ` j ) ) = ( M ` (/) ) ) | 
						
							| 59 | 1 | adantr |  |-  ( ( ph /\ ( G ` j ) = (/) ) -> M e. Meas ) | 
						
							| 60 | 59 | mea0 |  |-  ( ( ph /\ ( G ` j ) = (/) ) -> ( M ` (/) ) = 0 ) | 
						
							| 61 | 58 60 | eqtrd |  |-  ( ( ph /\ ( G ` j ) = (/) ) -> ( M ` ( G ` j ) ) = 0 ) | 
						
							| 62 | 61 | ad4ant14 |  |-  ( ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) /\ ( G ` j ) = (/) ) -> ( M ` ( G ` j ) ) = 0 ) | 
						
							| 63 |  | neneq |  |-  ( ( M ` ( G ` j ) ) =/= 0 -> -. ( M ` ( G ` j ) ) = 0 ) | 
						
							| 64 | 63 | ad2antlr |  |-  ( ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) /\ ( G ` j ) = (/) ) -> -. ( M ` ( G ` j ) ) = 0 ) | 
						
							| 65 | 62 64 | pm2.65da |  |-  ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> -. ( G ` j ) = (/) ) | 
						
							| 66 | 65 | neqned |  |-  ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> ( G ` j ) =/= (/) ) | 
						
							| 67 | 56 66 | jca |  |-  ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> ( j e. X /\ ( G ` j ) =/= (/) ) ) | 
						
							| 68 |  | fveq2 |  |-  ( i = j -> ( G ` i ) = ( G ` j ) ) | 
						
							| 69 | 68 | neeq1d |  |-  ( i = j -> ( ( G ` i ) =/= (/) <-> ( G ` j ) =/= (/) ) ) | 
						
							| 70 | 69 | elrab |  |-  ( j e. { i e. X | ( G ` i ) =/= (/) } <-> ( j e. X /\ ( G ` j ) =/= (/) ) ) | 
						
							| 71 | 67 70 | sylibr |  |-  ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> j e. { i e. X | ( G ` i ) =/= (/) } ) | 
						
							| 72 | 71 5 | eleqtrrdi |  |-  ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> j e. Y ) | 
						
							| 73 |  | eldifn |  |-  ( j e. ( X \ Y ) -> -. j e. Y ) | 
						
							| 74 | 73 | ad2antlr |  |-  ( ( ( ph /\ j e. ( X \ Y ) ) /\ ( M ` ( G ` j ) ) =/= 0 ) -> -. j e. Y ) | 
						
							| 75 | 72 74 | pm2.65da |  |-  ( ( ph /\ j e. ( X \ Y ) ) -> -. ( M ` ( G ` j ) ) =/= 0 ) | 
						
							| 76 |  | nne |  |-  ( -. ( M ` ( G ` j ) ) =/= 0 <-> ( M ` ( G ` j ) ) = 0 ) | 
						
							| 77 | 75 76 | sylib |  |-  ( ( ph /\ j e. ( X \ Y ) ) -> ( M ` ( G ` j ) ) = 0 ) | 
						
							| 78 | 46 3 49 54 77 | sge0ss |  |-  ( ph -> ( sum^ ` ( j e. Y |-> ( M ` ( G ` j ) ) ) ) = ( sum^ ` ( j e. X |-> ( M ` ( G ` j ) ) ) ) ) | 
						
							| 79 | 78 | eqcomd |  |-  ( ph -> ( sum^ ` ( j e. X |-> ( M ` ( G ` j ) ) ) ) = ( sum^ ` ( j e. Y |-> ( M ` ( G ` j ) ) ) ) ) | 
						
							| 80 | 3 49 | ssexd |  |-  ( ph -> Y e. _V ) | 
						
							| 81 |  | nfv |  |-  F/ i ph | 
						
							| 82 |  | eqid |  |-  ( i e. Y |-> ( G ` i ) ) = ( i e. Y |-> ( G ` i ) ) | 
						
							| 83 | 4 | ffnd |  |-  ( ph -> G Fn X ) | 
						
							| 84 |  | dffn3 |  |-  ( G Fn X <-> G : X --> ran G ) | 
						
							| 85 | 83 84 | sylib |  |-  ( ph -> G : X --> ran G ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ph /\ i e. Y ) -> G : X --> ran G ) | 
						
							| 87 | 49 | sselda |  |-  ( ( ph /\ i e. Y ) -> i e. X ) | 
						
							| 88 | 86 87 | ffvelcdmd |  |-  ( ( ph /\ i e. Y ) -> ( G ` i ) e. ran G ) | 
						
							| 89 | 5 | eleq2i |  |-  ( i e. Y <-> i e. { i e. X | ( G ` i ) =/= (/) } ) | 
						
							| 90 |  | rabid |  |-  ( i e. { i e. X | ( G ` i ) =/= (/) } <-> ( i e. X /\ ( G ` i ) =/= (/) ) ) | 
						
							| 91 | 89 90 | bitri |  |-  ( i e. Y <-> ( i e. X /\ ( G ` i ) =/= (/) ) ) | 
						
							| 92 | 91 | biimpi |  |-  ( i e. Y -> ( i e. X /\ ( G ` i ) =/= (/) ) ) | 
						
							| 93 | 92 | simprd |  |-  ( i e. Y -> ( G ` i ) =/= (/) ) | 
						
							| 94 | 93 | adantl |  |-  ( ( ph /\ i e. Y ) -> ( G ` i ) =/= (/) ) | 
						
							| 95 |  | nelsn |  |-  ( ( G ` i ) =/= (/) -> -. ( G ` i ) e. { (/) } ) | 
						
							| 96 | 94 95 | syl |  |-  ( ( ph /\ i e. Y ) -> -. ( G ` i ) e. { (/) } ) | 
						
							| 97 | 88 96 | eldifd |  |-  ( ( ph /\ i e. Y ) -> ( G ` i ) e. ( ran G \ { (/) } ) ) | 
						
							| 98 |  | disjss1 |  |-  ( Y C_ X -> ( Disj_ i e. X ( G ` i ) -> Disj_ i e. Y ( G ` i ) ) ) | 
						
							| 99 | 49 6 98 | sylc |  |-  ( ph -> Disj_ i e. Y ( G ` i ) ) | 
						
							| 100 | 81 82 97 94 99 | disjf1 |  |-  ( ph -> ( i e. Y |-> ( G ` i ) ) : Y -1-1-> ( ran G \ { (/) } ) ) | 
						
							| 101 | 4 49 | feqresmpt |  |-  ( ph -> ( G |` Y ) = ( i e. Y |-> ( G ` i ) ) ) | 
						
							| 102 |  | f1eq1 |  |-  ( ( G |` Y ) = ( i e. Y |-> ( G ` i ) ) -> ( ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) <-> ( i e. Y |-> ( G ` i ) ) : Y -1-1-> ( ran G \ { (/) } ) ) ) | 
						
							| 103 | 101 102 | syl |  |-  ( ph -> ( ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) <-> ( i e. Y |-> ( G ` i ) ) : Y -1-1-> ( ran G \ { (/) } ) ) ) | 
						
							| 104 | 100 103 | mpbird |  |-  ( ph -> ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) ) | 
						
							| 105 | 101 | rneqd |  |-  ( ph -> ran ( G |` Y ) = ran ( i e. Y |-> ( G ` i ) ) ) | 
						
							| 106 | 97 | ralrimiva |  |-  ( ph -> A. i e. Y ( G ` i ) e. ( ran G \ { (/) } ) ) | 
						
							| 107 | 82 | rnmptss |  |-  ( A. i e. Y ( G ` i ) e. ( ran G \ { (/) } ) -> ran ( i e. Y |-> ( G ` i ) ) C_ ( ran G \ { (/) } ) ) | 
						
							| 108 | 106 107 | syl |  |-  ( ph -> ran ( i e. Y |-> ( G ` i ) ) C_ ( ran G \ { (/) } ) ) | 
						
							| 109 | 105 108 | eqsstrd |  |-  ( ph -> ran ( G |` Y ) C_ ( ran G \ { (/) } ) ) | 
						
							| 110 |  | simpl |  |-  ( ( ph /\ x e. ( ran G \ { (/) } ) ) -> ph ) | 
						
							| 111 |  | eldifi |  |-  ( x e. ( ran G \ { (/) } ) -> x e. ran G ) | 
						
							| 112 | 111 | adantl |  |-  ( ( ph /\ x e. ( ran G \ { (/) } ) ) -> x e. ran G ) | 
						
							| 113 |  | eldifsni |  |-  ( x e. ( ran G \ { (/) } ) -> x =/= (/) ) | 
						
							| 114 | 113 | adantl |  |-  ( ( ph /\ x e. ( ran G \ { (/) } ) ) -> x =/= (/) ) | 
						
							| 115 |  | simpr |  |-  ( ( ph /\ x e. ran G ) -> x e. ran G ) | 
						
							| 116 |  | fvelrnb |  |-  ( G Fn X -> ( x e. ran G <-> E. i e. X ( G ` i ) = x ) ) | 
						
							| 117 | 83 116 | syl |  |-  ( ph -> ( x e. ran G <-> E. i e. X ( G ` i ) = x ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ph /\ x e. ran G ) -> ( x e. ran G <-> E. i e. X ( G ` i ) = x ) ) | 
						
							| 119 | 115 118 | mpbid |  |-  ( ( ph /\ x e. ran G ) -> E. i e. X ( G ` i ) = x ) | 
						
							| 120 | 119 | 3adant3 |  |-  ( ( ph /\ x e. ran G /\ x =/= (/) ) -> E. i e. X ( G ` i ) = x ) | 
						
							| 121 |  | id |  |-  ( ( G ` i ) = x -> ( G ` i ) = x ) | 
						
							| 122 | 121 | eqcomd |  |-  ( ( G ` i ) = x -> x = ( G ` i ) ) | 
						
							| 123 | 122 | 3ad2ant3 |  |-  ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> x = ( G ` i ) ) | 
						
							| 124 |  | simp1l |  |-  ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> ph ) | 
						
							| 125 |  | simp2 |  |-  ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> i e. X ) | 
						
							| 126 |  | simpr |  |-  ( ( x =/= (/) /\ ( G ` i ) = x ) -> ( G ` i ) = x ) | 
						
							| 127 |  | simpl |  |-  ( ( x =/= (/) /\ ( G ` i ) = x ) -> x =/= (/) ) | 
						
							| 128 | 126 127 | eqnetrd |  |-  ( ( x =/= (/) /\ ( G ` i ) = x ) -> ( G ` i ) =/= (/) ) | 
						
							| 129 | 128 | adantll |  |-  ( ( ( ph /\ x =/= (/) ) /\ ( G ` i ) = x ) -> ( G ` i ) =/= (/) ) | 
						
							| 130 | 129 | 3adant2 |  |-  ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> ( G ` i ) =/= (/) ) | 
						
							| 131 | 91 | biimpri |  |-  ( ( i e. X /\ ( G ` i ) =/= (/) ) -> i e. Y ) | 
						
							| 132 |  | fvexd |  |-  ( ( i e. X /\ ( G ` i ) =/= (/) ) -> ( G ` i ) e. _V ) | 
						
							| 133 | 82 | elrnmpt1 |  |-  ( ( i e. Y /\ ( G ` i ) e. _V ) -> ( G ` i ) e. ran ( i e. Y |-> ( G ` i ) ) ) | 
						
							| 134 | 131 132 133 | syl2anc |  |-  ( ( i e. X /\ ( G ` i ) =/= (/) ) -> ( G ` i ) e. ran ( i e. Y |-> ( G ` i ) ) ) | 
						
							| 135 | 134 | 3adant1 |  |-  ( ( ph /\ i e. X /\ ( G ` i ) =/= (/) ) -> ( G ` i ) e. ran ( i e. Y |-> ( G ` i ) ) ) | 
						
							| 136 | 105 | eqcomd |  |-  ( ph -> ran ( i e. Y |-> ( G ` i ) ) = ran ( G |` Y ) ) | 
						
							| 137 | 136 | 3ad2ant1 |  |-  ( ( ph /\ i e. X /\ ( G ` i ) =/= (/) ) -> ran ( i e. Y |-> ( G ` i ) ) = ran ( G |` Y ) ) | 
						
							| 138 | 135 137 | eleqtrd |  |-  ( ( ph /\ i e. X /\ ( G ` i ) =/= (/) ) -> ( G ` i ) e. ran ( G |` Y ) ) | 
						
							| 139 | 124 125 130 138 | syl3anc |  |-  ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> ( G ` i ) e. ran ( G |` Y ) ) | 
						
							| 140 | 123 139 | eqeltrd |  |-  ( ( ( ph /\ x =/= (/) ) /\ i e. X /\ ( G ` i ) = x ) -> x e. ran ( G |` Y ) ) | 
						
							| 141 | 140 | 3exp |  |-  ( ( ph /\ x =/= (/) ) -> ( i e. X -> ( ( G ` i ) = x -> x e. ran ( G |` Y ) ) ) ) | 
						
							| 142 | 141 | rexlimdv |  |-  ( ( ph /\ x =/= (/) ) -> ( E. i e. X ( G ` i ) = x -> x e. ran ( G |` Y ) ) ) | 
						
							| 143 | 142 | 3adant2 |  |-  ( ( ph /\ x e. ran G /\ x =/= (/) ) -> ( E. i e. X ( G ` i ) = x -> x e. ran ( G |` Y ) ) ) | 
						
							| 144 | 120 143 | mpd |  |-  ( ( ph /\ x e. ran G /\ x =/= (/) ) -> x e. ran ( G |` Y ) ) | 
						
							| 145 | 110 112 114 144 | syl3anc |  |-  ( ( ph /\ x e. ( ran G \ { (/) } ) ) -> x e. ran ( G |` Y ) ) | 
						
							| 146 | 109 145 | eqelssd |  |-  ( ph -> ran ( G |` Y ) = ( ran G \ { (/) } ) ) | 
						
							| 147 | 104 146 | jca |  |-  ( ph -> ( ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) /\ ran ( G |` Y ) = ( ran G \ { (/) } ) ) ) | 
						
							| 148 |  | dff1o5 |  |-  ( ( G |` Y ) : Y -1-1-onto-> ( ran G \ { (/) } ) <-> ( ( G |` Y ) : Y -1-1-> ( ran G \ { (/) } ) /\ ran ( G |` Y ) = ( ran G \ { (/) } ) ) ) | 
						
							| 149 | 147 148 | sylibr |  |-  ( ph -> ( G |` Y ) : Y -1-1-onto-> ( ran G \ { (/) } ) ) | 
						
							| 150 |  | fvres |  |-  ( j e. Y -> ( ( G |` Y ) ` j ) = ( G ` j ) ) | 
						
							| 151 | 150 | adantl |  |-  ( ( ph /\ j e. Y ) -> ( ( G |` Y ) ` j ) = ( G ` j ) ) | 
						
							| 152 | 7 46 43 80 149 151 19 | sge0f1o |  |-  ( ph -> ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) = ( sum^ ` ( j e. Y |-> ( M ` ( G ` j ) ) ) ) ) | 
						
							| 153 | 152 | eqcomd |  |-  ( ph -> ( sum^ ` ( j e. Y |-> ( M ` ( G ` j ) ) ) ) = ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) ) | 
						
							| 154 | 45 79 153 | 3eqtrd |  |-  ( ph -> ( sum^ ` ( M o. G ) ) = ( sum^ ` ( k e. ( ran G \ { (/) } ) |-> ( M ` k ) ) ) ) | 
						
							| 155 | 37 39 154 | 3eqtr4d |  |-  ( ph -> ( sum^ ` ( M |` ran G ) ) = ( sum^ ` ( M o. G ) ) ) |