Step |
Hyp |
Ref |
Expression |
1 |
|
ismeannd.sal |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
ismeannd.mf |
⊢ ( 𝜑 → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
ismeannd.m0 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
|
ismeannd.iun |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
5 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = 𝑆 ) |
6 |
5
|
feq2d |
⊢ ( 𝜑 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) ) |
7 |
2 6
|
mpbird |
⊢ ( 𝜑 → 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ) |
8 |
5 1
|
eqeltrd |
⊢ ( 𝜑 → dom 𝑀 ∈ SAlg ) |
9 |
7 8
|
jca |
⊢ ( 𝜑 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ) |
10 |
|
unieq |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) |
11 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
12 |
11
|
a1i |
⊢ ( 𝑥 = ∅ → ∪ ∅ = ∅ ) |
13 |
10 12
|
eqtrd |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∅ ) |
14 |
13
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∅ ) ) |
15 |
14 3
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = 0 ) |
16 |
|
reseq2 |
⊢ ( 𝑥 = ∅ → ( 𝑀 ↾ 𝑥 ) = ( 𝑀 ↾ ∅ ) ) |
17 |
|
res0 |
⊢ ( 𝑀 ↾ ∅ ) = ∅ |
18 |
17
|
a1i |
⊢ ( 𝑥 = ∅ → ( 𝑀 ↾ ∅ ) = ∅ ) |
19 |
16 18
|
eqtrd |
⊢ ( 𝑥 = ∅ → ( 𝑀 ↾ 𝑥 ) = ∅ ) |
20 |
19
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ∅ ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ∅ ) ) |
22 |
|
sge00 |
⊢ ( Σ^ ‘ ∅ ) = 0 |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( Σ^ ‘ ∅ ) = 0 ) |
24 |
21 23
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = 0 ) |
25 |
15 24
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
27 |
26
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
28 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ) |
29 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → Disj 𝑦 ∈ 𝑥 𝑦 ) |
30 |
28 29
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
31 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑥 ≼ ω ) |
32 |
|
neqne |
⊢ ( ¬ 𝑥 = ∅ → 𝑥 ≠ ∅ ) |
33 |
32
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑥 ≠ ∅ ) |
34 |
|
id |
⊢ ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) |
35 |
34
|
cbvdisjv |
⊢ ( Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑤 ∈ 𝑥 𝑤 ) |
36 |
35
|
biimpi |
⊢ ( Disj 𝑦 ∈ 𝑥 𝑦 → Disj 𝑤 ∈ 𝑥 𝑤 ) |
37 |
36
|
adantl |
⊢ ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → Disj 𝑤 ∈ 𝑥 𝑤 ) |
38 |
37
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → Disj 𝑤 ∈ 𝑥 𝑤 ) |
39 |
31 33 38
|
nnfoctbdj |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ∃ 𝑒 ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) |
40 |
|
simpl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
41 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) → 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) |
42 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) → Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
43 |
|
founiiun0 |
⊢ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) → ∪ 𝑥 = ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
44 |
43
|
fveq2d |
⊢ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) |
45 |
44
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) |
46 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝜑 ) |
47 |
|
fof |
⊢ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) → 𝑒 : ℕ ⟶ ( 𝑥 ∪ { ∅ } ) ) |
48 |
47
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) → 𝑒 : ℕ ⟶ ( 𝑥 ∪ { ∅ } ) ) |
49 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 dom 𝑀 → 𝑥 ⊆ dom 𝑀 ) |
50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑥 ⊆ dom 𝑀 ) |
51 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → dom 𝑀 = 𝑆 ) |
52 |
50 51
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑥 ⊆ 𝑆 ) |
53 |
|
0sal |
⊢ ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 ) |
54 |
1 53
|
syl |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
55 |
|
snssi |
⊢ ( ∅ ∈ 𝑆 → { ∅ } ⊆ 𝑆 ) |
56 |
54 55
|
syl |
⊢ ( 𝜑 → { ∅ } ⊆ 𝑆 ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → { ∅ } ⊆ 𝑆 ) |
58 |
52 57
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑥 ∪ { ∅ } ) ⊆ 𝑆 ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) → ( 𝑥 ∪ { ∅ } ) ⊆ 𝑆 ) |
60 |
48 59
|
fssd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) → 𝑒 : ℕ ⟶ 𝑆 ) |
61 |
60
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝑒 : ℕ ⟶ 𝑆 ) |
62 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
63 |
46 61 62 4
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
64 |
63
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
65 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝑀 = ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
66 |
65
|
reseq1d |
⊢ ( 𝜑 → ( 𝑀 ↾ 𝑥 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑀 ↾ 𝑥 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑀 ↾ 𝑥 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) ) |
69 |
52
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
70 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
71 |
|
snssi |
⊢ ( ∅ ∈ 𝑥 → { ∅ } ⊆ 𝑥 ) |
72 |
|
ssequn2 |
⊢ ( { ∅ } ⊆ 𝑥 ↔ ( 𝑥 ∪ { ∅ } ) = 𝑥 ) |
73 |
71 72
|
sylib |
⊢ ( ∅ ∈ 𝑥 → ( 𝑥 ∪ { ∅ } ) = 𝑥 ) |
74 |
73
|
eqcomd |
⊢ ( ∅ ∈ 𝑥 → 𝑥 = ( 𝑥 ∪ { ∅ } ) ) |
75 |
74
|
mpteq1d |
⊢ ( ∅ ∈ 𝑥 → ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
76 |
75
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
77 |
68 70 76
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑀 ↾ 𝑥 ) = ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
78 |
77
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
79 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) |
80 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → 𝑥 ∈ 𝒫 dom 𝑀 ) |
81 |
|
p0ex |
⊢ { ∅ } ∈ V |
82 |
81
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → { ∅ } ∈ V ) |
83 |
|
disjsn |
⊢ ( ( 𝑥 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ 𝑥 ) |
84 |
83
|
biimpri |
⊢ ( ¬ ∅ ∈ 𝑥 → ( 𝑥 ∩ { ∅ } ) = ∅ ) |
85 |
84
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( 𝑥 ∩ { ∅ } ) = ∅ ) |
86 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
87 |
52
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑆 ) |
88 |
86 87
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
89 |
88
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
90 |
|
elsni |
⊢ ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ ) |
91 |
90
|
fveq2d |
⊢ ( 𝑦 ∈ { ∅ } → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ∅ ) ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ∅ ) ) |
93 |
2 54
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) ∈ ( 0 [,] +∞ ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ ∅ ) ∈ ( 0 [,] +∞ ) ) |
95 |
92 94
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
96 |
95
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
97 |
79 80 82 85 89 96
|
sge0splitmpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) = ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
98 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ∅ ) ) |
99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ∅ ) ) |
100 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
101 |
99 100
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( 𝑀 ‘ 𝑦 ) = 0 ) |
102 |
90 101
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑦 ) = 0 ) |
103 |
102
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) = ( 𝑦 ∈ { ∅ } ↦ 0 ) ) |
104 |
103
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) = ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ 0 ) ) ) |
105 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
106 |
81
|
a1i |
⊢ ( 𝜑 → { ∅ } ∈ V ) |
107 |
105 106
|
sge0z |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ 0 ) ) = 0 ) |
108 |
104 107
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) = 0 ) |
109 |
108
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) = ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) ) |
110 |
109
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) = ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) ) |
111 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑥 ∈ 𝒫 dom 𝑀 ) |
112 |
67 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑀 ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
113 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
114 |
113 52
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑀 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
115 |
112 114
|
feq1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
116 |
111 115
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) ∈ ℝ* ) |
117 |
116
|
xaddid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) = ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
118 |
112
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
119 |
118
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
120 |
117 119
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
121 |
120
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
122 |
97 110 121
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
123 |
78 122
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
124 |
123
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
125 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
126 |
|
nfv |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) |
127 |
|
nfdisj1 |
⊢ Ⅎ 𝑛 Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) |
128 |
126 127
|
nfan |
⊢ Ⅎ 𝑛 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
129 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑒 ‘ 𝑛 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) |
130 |
|
nnex |
⊢ ℕ ∈ V |
131 |
130
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ℕ ∈ V ) |
132 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) |
133 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑒 ‘ 𝑛 ) = ( 𝑒 ‘ 𝑛 ) ) |
134 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
135 |
58
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → 𝑦 ∈ 𝑆 ) |
136 |
134 135
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
137 |
136
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
138 |
46 101
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ∧ 𝑦 = ∅ ) → ( 𝑀 ‘ 𝑦 ) = 0 ) |
139 |
125 128 129 131 132 62 133 137 138
|
sge0fodjrn |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
140 |
124 139
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
141 |
140
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
142 |
45 64 141
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
143 |
40 41 42 142
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
144 |
143
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) |
145 |
144
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( ∃ 𝑒 ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) |
146 |
30 39 145
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
147 |
27 146
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
148 |
147
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) |
149 |
148
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) |
150 |
9 3 149
|
jca31 |
⊢ ( 𝜑 → ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) |
151 |
|
ismea |
⊢ ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) |
152 |
150 151
|
sylibr |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |