| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismeannd.sal |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 2 |
|
ismeannd.mf |
⊢ ( 𝜑 → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
ismeannd.m0 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
| 4 |
|
ismeannd.iun |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 5 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = 𝑆 ) |
| 6 |
5
|
feq2d |
⊢ ( 𝜑 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) ) |
| 7 |
2 6
|
mpbird |
⊢ ( 𝜑 → 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ) |
| 8 |
5 1
|
eqeltrd |
⊢ ( 𝜑 → dom 𝑀 ∈ SAlg ) |
| 9 |
7 8
|
jca |
⊢ ( 𝜑 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ) |
| 10 |
|
unieq |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) |
| 11 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 12 |
11
|
a1i |
⊢ ( 𝑥 = ∅ → ∪ ∅ = ∅ ) |
| 13 |
10 12
|
eqtrd |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∅ ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∅ ) ) |
| 15 |
14 3
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = 0 ) |
| 16 |
|
reseq2 |
⊢ ( 𝑥 = ∅ → ( 𝑀 ↾ 𝑥 ) = ( 𝑀 ↾ ∅ ) ) |
| 17 |
|
res0 |
⊢ ( 𝑀 ↾ ∅ ) = ∅ |
| 18 |
17
|
a1i |
⊢ ( 𝑥 = ∅ → ( 𝑀 ↾ ∅ ) = ∅ ) |
| 19 |
16 18
|
eqtrd |
⊢ ( 𝑥 = ∅ → ( 𝑀 ↾ 𝑥 ) = ∅ ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ∅ ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ∅ ) ) |
| 22 |
|
sge00 |
⊢ ( Σ^ ‘ ∅ ) = 0 |
| 23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( Σ^ ‘ ∅ ) = 0 ) |
| 24 |
21 23
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = 0 ) |
| 25 |
15 24
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 27 |
26
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 28 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ) |
| 29 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → Disj 𝑦 ∈ 𝑥 𝑦 ) |
| 30 |
28 29
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
| 31 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑥 ≼ ω ) |
| 32 |
|
neqne |
⊢ ( ¬ 𝑥 = ∅ → 𝑥 ≠ ∅ ) |
| 33 |
32
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑥 ≠ ∅ ) |
| 34 |
|
id |
⊢ ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) |
| 35 |
34
|
cbvdisjv |
⊢ ( Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑤 ∈ 𝑥 𝑤 ) |
| 36 |
35
|
biimpi |
⊢ ( Disj 𝑦 ∈ 𝑥 𝑦 → Disj 𝑤 ∈ 𝑥 𝑤 ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → Disj 𝑤 ∈ 𝑥 𝑤 ) |
| 38 |
37
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → Disj 𝑤 ∈ 𝑥 𝑤 ) |
| 39 |
31 33 38
|
nnfoctbdj |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ∃ 𝑒 ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) |
| 40 |
|
simpl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) |
| 41 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) → 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) |
| 42 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) → Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 43 |
|
founiiun0 |
⊢ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) → ∪ 𝑥 = ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 44 |
43
|
fveq2d |
⊢ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) |
| 45 |
44
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) |
| 46 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝜑 ) |
| 47 |
|
fof |
⊢ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) → 𝑒 : ℕ ⟶ ( 𝑥 ∪ { ∅ } ) ) |
| 48 |
47
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) → 𝑒 : ℕ ⟶ ( 𝑥 ∪ { ∅ } ) ) |
| 49 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 dom 𝑀 → 𝑥 ⊆ dom 𝑀 ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑥 ⊆ dom 𝑀 ) |
| 51 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → dom 𝑀 = 𝑆 ) |
| 52 |
50 51
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑥 ⊆ 𝑆 ) |
| 53 |
|
0sal |
⊢ ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 ) |
| 54 |
1 53
|
syl |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
| 55 |
|
snssi |
⊢ ( ∅ ∈ 𝑆 → { ∅ } ⊆ 𝑆 ) |
| 56 |
54 55
|
syl |
⊢ ( 𝜑 → { ∅ } ⊆ 𝑆 ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → { ∅ } ⊆ 𝑆 ) |
| 58 |
52 57
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑥 ∪ { ∅ } ) ⊆ 𝑆 ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) → ( 𝑥 ∪ { ∅ } ) ⊆ 𝑆 ) |
| 60 |
48 59
|
fssd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) → 𝑒 : ℕ ⟶ 𝑆 ) |
| 61 |
60
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝑒 : ℕ ⟶ 𝑆 ) |
| 62 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 63 |
46 61 62 4
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 64 |
63
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 65 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝑀 = ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
| 66 |
65
|
reseq1d |
⊢ ( 𝜑 → ( 𝑀 ↾ 𝑥 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑀 ↾ 𝑥 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑀 ↾ 𝑥 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) ) |
| 69 |
52
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( 𝑀 ‘ 𝑦 ) ) ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
| 71 |
|
snssi |
⊢ ( ∅ ∈ 𝑥 → { ∅ } ⊆ 𝑥 ) |
| 72 |
|
ssequn2 |
⊢ ( { ∅ } ⊆ 𝑥 ↔ ( 𝑥 ∪ { ∅ } ) = 𝑥 ) |
| 73 |
71 72
|
sylib |
⊢ ( ∅ ∈ 𝑥 → ( 𝑥 ∪ { ∅ } ) = 𝑥 ) |
| 74 |
73
|
eqcomd |
⊢ ( ∅ ∈ 𝑥 → 𝑥 = ( 𝑥 ∪ { ∅ } ) ) |
| 75 |
74
|
mpteq1d |
⊢ ( ∅ ∈ 𝑥 → ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
| 76 |
75
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
| 77 |
68 70 76
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑀 ↾ 𝑥 ) = ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
| 78 |
77
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 79 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) |
| 80 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → 𝑥 ∈ 𝒫 dom 𝑀 ) |
| 81 |
|
p0ex |
⊢ { ∅ } ∈ V |
| 82 |
81
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → { ∅ } ∈ V ) |
| 83 |
|
disjsn |
⊢ ( ( 𝑥 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ 𝑥 ) |
| 84 |
83
|
biimpri |
⊢ ( ¬ ∅ ∈ 𝑥 → ( 𝑥 ∩ { ∅ } ) = ∅ ) |
| 85 |
84
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( 𝑥 ∩ { ∅ } ) = ∅ ) |
| 86 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
| 87 |
52
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑆 ) |
| 88 |
86 87
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 89 |
88
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 90 |
|
elsni |
⊢ ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ ) |
| 91 |
90
|
fveq2d |
⊢ ( 𝑦 ∈ { ∅ } → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ∅ ) ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ∅ ) ) |
| 93 |
2 54
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) ∈ ( 0 [,] +∞ ) ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ ∅ ) ∈ ( 0 [,] +∞ ) ) |
| 95 |
92 94
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 96 |
95
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 97 |
79 80 82 85 89 96
|
sge0splitmpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) = ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
| 98 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ∅ ) ) |
| 99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ∅ ) ) |
| 100 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 101 |
99 100
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( 𝑀 ‘ 𝑦 ) = 0 ) |
| 102 |
90 101
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑦 ) = 0 ) |
| 103 |
102
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) = ( 𝑦 ∈ { ∅ } ↦ 0 ) ) |
| 104 |
103
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) = ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ 0 ) ) ) |
| 105 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 106 |
81
|
a1i |
⊢ ( 𝜑 → { ∅ } ∈ V ) |
| 107 |
105 106
|
sge0z |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ 0 ) ) = 0 ) |
| 108 |
104 107
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) = 0 ) |
| 109 |
108
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) = ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) ) |
| 110 |
109
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) = ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) ) |
| 111 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑥 ∈ 𝒫 dom 𝑀 ) |
| 112 |
67 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑀 ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
| 113 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
| 114 |
113 52
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑀 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
| 115 |
112 114
|
feq1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
| 116 |
111 115
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) ∈ ℝ* ) |
| 117 |
116
|
xaddridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) = ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 118 |
112
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 119 |
118
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 120 |
117 119
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 121 |
120
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( ( Σ^ ‘ ( 𝑦 ∈ 𝑥 ↦ ( 𝑀 ‘ 𝑦 ) ) ) +𝑒 0 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 122 |
97 110 121
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 123 |
78 122
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 124 |
123
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 125 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 126 |
|
nfv |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) |
| 127 |
|
nfdisj1 |
⊢ Ⅎ 𝑛 Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) |
| 128 |
126 127
|
nfan |
⊢ Ⅎ 𝑛 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 129 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑒 ‘ 𝑛 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) |
| 130 |
|
nnex |
⊢ ℕ ∈ V |
| 131 |
130
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ℕ ∈ V ) |
| 132 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) |
| 133 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑒 ‘ 𝑛 ) = ( 𝑒 ‘ 𝑛 ) ) |
| 134 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
| 135 |
58
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → 𝑦 ∈ 𝑆 ) |
| 136 |
134 135
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 137 |
136
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → ( 𝑀 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 138 |
46 101
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ∧ 𝑦 = ∅ ) → ( 𝑀 ‘ 𝑦 ) = 0 ) |
| 139 |
125 128 129 131 132 62 133 137 138
|
sge0fodjrn |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 140 |
124 139
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 141 |
140
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 142 |
45 64 141
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 143 |
40 41 42 142
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 144 |
143
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) |
| 145 |
144
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( ∃ 𝑒 ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) |
| 146 |
30 39 145
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 147 |
27 146
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
| 148 |
147
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) |
| 149 |
148
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) |
| 150 |
9 3 149
|
jca31 |
⊢ ( 𝜑 → ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) |
| 151 |
|
ismea |
⊢ ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) |
| 152 |
150 151
|
sylibr |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |