Metamath Proof Explorer


Theorem ismeannd

Description: Sufficient condition to prove that M is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses ismeannd.sal ( 𝜑𝑆 ∈ SAlg )
ismeannd.mf ( 𝜑𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) )
ismeannd.m0 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
ismeannd.iun ( ( 𝜑𝑒 : ℕ ⟶ 𝑆Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( 𝑀 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒𝑛 ) ) ) ) )
Assertion ismeannd ( 𝜑𝑀 ∈ Meas )

Proof

Step Hyp Ref Expression
1 ismeannd.sal ( 𝜑𝑆 ∈ SAlg )
2 ismeannd.mf ( 𝜑𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) )
3 ismeannd.m0 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
4 ismeannd.iun ( ( 𝜑𝑒 : ℕ ⟶ 𝑆Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( 𝑀 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒𝑛 ) ) ) ) )
5 2 fdmd ( 𝜑 → dom 𝑀 = 𝑆 )
6 5 feq2d ( 𝜑 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) )
7 2 6 mpbird ( 𝜑𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) )
8 5 1 eqeltrd ( 𝜑 → dom 𝑀 ∈ SAlg )
9 7 8 jca ( 𝜑 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) )
10 unieq ( 𝑥 = ∅ → 𝑥 = ∅ )
11 uni0 ∅ = ∅
12 11 a1i ( 𝑥 = ∅ → ∅ = ∅ )
13 10 12 eqtrd ( 𝑥 = ∅ → 𝑥 = ∅ )
14 13 fveq2d ( 𝑥 = ∅ → ( 𝑀 𝑥 ) = ( 𝑀 ‘ ∅ ) )
15 14 3 sylan9eqr ( ( 𝜑𝑥 = ∅ ) → ( 𝑀 𝑥 ) = 0 )
16 reseq2 ( 𝑥 = ∅ → ( 𝑀𝑥 ) = ( 𝑀 ↾ ∅ ) )
17 res0 ( 𝑀 ↾ ∅ ) = ∅
18 17 a1i ( 𝑥 = ∅ → ( 𝑀 ↾ ∅ ) = ∅ )
19 16 18 eqtrd ( 𝑥 = ∅ → ( 𝑀𝑥 ) = ∅ )
20 19 fveq2d ( 𝑥 = ∅ → ( Σ^ ‘ ( 𝑀𝑥 ) ) = ( Σ^ ‘ ∅ ) )
21 20 adantl ( ( 𝜑𝑥 = ∅ ) → ( Σ^ ‘ ( 𝑀𝑥 ) ) = ( Σ^ ‘ ∅ ) )
22 sge00 ( Σ^ ‘ ∅ ) = 0
23 22 a1i ( ( 𝜑𝑥 = ∅ ) → ( Σ^ ‘ ∅ ) = 0 )
24 21 23 eqtrd ( ( 𝜑𝑥 = ∅ ) → ( Σ^ ‘ ( 𝑀𝑥 ) ) = 0 )
25 15 24 eqtr4d ( ( 𝜑𝑥 = ∅ ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
26 25 adantlr ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑥 = ∅ ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
27 26 adantlr ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ 𝑥 = ∅ ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
28 simpll ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) )
29 simplrr ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → Disj 𝑦𝑥 𝑦 )
30 28 29 jca ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) )
31 simplrl ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑥 ≼ ω )
32 neqne ( ¬ 𝑥 = ∅ → 𝑥 ≠ ∅ )
33 32 adantl ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑥 ≠ ∅ )
34 id ( 𝑦 = 𝑤𝑦 = 𝑤 )
35 34 cbvdisjv ( Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤 )
36 35 biimpi ( Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤 )
37 36 adantl ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → Disj 𝑤𝑥 𝑤 )
38 37 ad2antlr ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → Disj 𝑤𝑥 𝑤 )
39 31 33 38 nnfoctbdj ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ∃ 𝑒 ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) )
40 simpl ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) ) → ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) )
41 simprl ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) ) → 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) )
42 simprr ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) ) → Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) )
43 founiiun0 ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) → 𝑥 = 𝑛 ∈ ℕ ( 𝑒𝑛 ) )
44 43 fveq2d ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) → ( 𝑀 𝑥 ) = ( 𝑀 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) )
45 44 ad2antlr ( ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( 𝑀 𝑥 ) = ( 𝑀 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) )
46 simplll ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → 𝜑 )
47 fof ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) → 𝑒 : ℕ ⟶ ( 𝑥 ∪ { ∅ } ) )
48 47 adantl ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) → 𝑒 : ℕ ⟶ ( 𝑥 ∪ { ∅ } ) )
49 elpwi ( 𝑥 ∈ 𝒫 dom 𝑀𝑥 ⊆ dom 𝑀 )
50 49 adantl ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑥 ⊆ dom 𝑀 )
51 5 adantr ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → dom 𝑀 = 𝑆 )
52 50 51 sseqtrd ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑥𝑆 )
53 0sal ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 )
54 1 53 syl ( 𝜑 → ∅ ∈ 𝑆 )
55 snssi ( ∅ ∈ 𝑆 → { ∅ } ⊆ 𝑆 )
56 54 55 syl ( 𝜑 → { ∅ } ⊆ 𝑆 )
57 56 adantr ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → { ∅ } ⊆ 𝑆 )
58 52 57 unssd ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑥 ∪ { ∅ } ) ⊆ 𝑆 )
59 58 adantr ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) → ( 𝑥 ∪ { ∅ } ) ⊆ 𝑆 )
60 48 59 fssd ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) → 𝑒 : ℕ ⟶ 𝑆 )
61 60 adantr ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → 𝑒 : ℕ ⟶ 𝑆 )
62 simpr ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) )
63 46 61 62 4 syl3anc ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( 𝑀 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒𝑛 ) ) ) ) )
64 63 adantllr ( ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( 𝑀 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒𝑛 ) ) ) ) )
65 2 feqmptd ( 𝜑𝑀 = ( 𝑦𝑆 ↦ ( 𝑀𝑦 ) ) )
66 65 reseq1d ( 𝜑 → ( 𝑀𝑥 ) = ( ( 𝑦𝑆 ↦ ( 𝑀𝑦 ) ) ↾ 𝑥 ) )
67 66 adantr ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑀𝑥 ) = ( ( 𝑦𝑆 ↦ ( 𝑀𝑦 ) ) ↾ 𝑥 ) )
68 67 adantr ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑀𝑥 ) = ( ( 𝑦𝑆 ↦ ( 𝑀𝑦 ) ) ↾ 𝑥 ) )
69 52 resmptd ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( 𝑦𝑆 ↦ ( 𝑀𝑦 ) ) ↾ 𝑥 ) = ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) )
70 69 adantr ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( ( 𝑦𝑆 ↦ ( 𝑀𝑦 ) ) ↾ 𝑥 ) = ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) )
71 snssi ( ∅ ∈ 𝑥 → { ∅ } ⊆ 𝑥 )
72 ssequn2 ( { ∅ } ⊆ 𝑥 ↔ ( 𝑥 ∪ { ∅ } ) = 𝑥 )
73 71 72 sylib ( ∅ ∈ 𝑥 → ( 𝑥 ∪ { ∅ } ) = 𝑥 )
74 73 eqcomd ( ∅ ∈ 𝑥𝑥 = ( 𝑥 ∪ { ∅ } ) )
75 74 mpteq1d ( ∅ ∈ 𝑥 → ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) = ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀𝑦 ) ) )
76 75 adantl ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) = ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀𝑦 ) ) )
77 68 70 76 3eqtrd ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑀𝑥 ) = ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀𝑦 ) ) )
78 77 fveq2d ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ∅ ∈ 𝑥 ) → ( Σ^ ‘ ( 𝑀𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀𝑦 ) ) ) )
79 nfv 𝑦 ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 )
80 simplr ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → 𝑥 ∈ 𝒫 dom 𝑀 )
81 p0ex { ∅ } ∈ V
82 81 a1i ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → { ∅ } ∈ V )
83 disjsn ( ( 𝑥 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ 𝑥 )
84 83 biimpri ( ¬ ∅ ∈ 𝑥 → ( 𝑥 ∩ { ∅ } ) = ∅ )
85 84 adantl ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( 𝑥 ∩ { ∅ } ) = ∅ )
86 2 ad2antrr ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦𝑥 ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) )
87 52 sselda ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦𝑥 ) → 𝑦𝑆 )
88 86 87 ffvelrnd ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦𝑥 ) → ( 𝑀𝑦 ) ∈ ( 0 [,] +∞ ) )
89 88 adantlr ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) ∧ 𝑦𝑥 ) → ( 𝑀𝑦 ) ∈ ( 0 [,] +∞ ) )
90 elsni ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ )
91 90 fveq2d ( 𝑦 ∈ { ∅ } → ( 𝑀𝑦 ) = ( 𝑀 ‘ ∅ ) )
92 91 adantl ( ( 𝜑𝑦 ∈ { ∅ } ) → ( 𝑀𝑦 ) = ( 𝑀 ‘ ∅ ) )
93 2 54 ffvelrnd ( 𝜑 → ( 𝑀 ‘ ∅ ) ∈ ( 0 [,] +∞ ) )
94 93 adantr ( ( 𝜑𝑦 ∈ { ∅ } ) → ( 𝑀 ‘ ∅ ) ∈ ( 0 [,] +∞ ) )
95 92 94 eqeltrd ( ( 𝜑𝑦 ∈ { ∅ } ) → ( 𝑀𝑦 ) ∈ ( 0 [,] +∞ ) )
96 95 ad4ant14 ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) ∧ 𝑦 ∈ { ∅ } ) → ( 𝑀𝑦 ) ∈ ( 0 [,] +∞ ) )
97 79 80 82 85 89 96 sge0splitmpt ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀𝑦 ) ) ) = ( ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) +𝑒 ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀𝑦 ) ) ) ) )
98 fveq2 ( 𝑦 = ∅ → ( 𝑀𝑦 ) = ( 𝑀 ‘ ∅ ) )
99 98 adantl ( ( 𝜑𝑦 = ∅ ) → ( 𝑀𝑦 ) = ( 𝑀 ‘ ∅ ) )
100 3 adantr ( ( 𝜑𝑦 = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 )
101 99 100 eqtrd ( ( 𝜑𝑦 = ∅ ) → ( 𝑀𝑦 ) = 0 )
102 90 101 sylan2 ( ( 𝜑𝑦 ∈ { ∅ } ) → ( 𝑀𝑦 ) = 0 )
103 102 mpteq2dva ( 𝜑 → ( 𝑦 ∈ { ∅ } ↦ ( 𝑀𝑦 ) ) = ( 𝑦 ∈ { ∅ } ↦ 0 ) )
104 103 fveq2d ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀𝑦 ) ) ) = ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ 0 ) ) )
105 nfv 𝑦 𝜑
106 81 a1i ( 𝜑 → { ∅ } ∈ V )
107 105 106 sge0z ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ 0 ) ) = 0 )
108 104 107 eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀𝑦 ) ) ) = 0 )
109 108 oveq2d ( 𝜑 → ( ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) +𝑒 ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀𝑦 ) ) ) ) = ( ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) +𝑒 0 ) )
110 109 ad2antrr ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) +𝑒 ( Σ^ ‘ ( 𝑦 ∈ { ∅ } ↦ ( 𝑀𝑦 ) ) ) ) = ( ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) +𝑒 0 ) )
111 simpr ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑥 ∈ 𝒫 dom 𝑀 )
112 67 69 eqtrd ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑀𝑥 ) = ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) )
113 2 adantr ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) )
114 113 52 fssresd ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑀𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) )
115 112 114 feq1dd ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) : 𝑥 ⟶ ( 0 [,] +∞ ) )
116 111 115 sge0xrcl ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) ∈ ℝ* )
117 116 xaddid1d ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) +𝑒 0 ) = ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) )
118 112 fveq2d ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑀𝑥 ) ) = ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) )
119 118 eqcomd ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
120 117 119 eqtrd ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) +𝑒 0 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
121 120 adantr ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( ( Σ^ ‘ ( 𝑦𝑥 ↦ ( 𝑀𝑦 ) ) ) +𝑒 0 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
122 97 110 121 3eqtrrd ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ¬ ∅ ∈ 𝑥 ) → ( Σ^ ‘ ( 𝑀𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀𝑦 ) ) ) )
123 78 122 pm2.61dan ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( Σ^ ‘ ( 𝑀𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀𝑦 ) ) ) )
124 123 ad2antrr ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( Σ^ ‘ ( 𝑀𝑥 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀𝑦 ) ) ) )
125 nfv 𝑦 ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) )
126 nfv 𝑛 ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) )
127 nfdisj1 𝑛 Disj 𝑛 ∈ ℕ ( 𝑒𝑛 )
128 126 127 nfan 𝑛 ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) )
129 fveq2 ( 𝑦 = ( 𝑒𝑛 ) → ( 𝑀𝑦 ) = ( 𝑀 ‘ ( 𝑒𝑛 ) ) )
130 nnex ℕ ∈ V
131 130 a1i ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ℕ ∈ V )
132 simplr ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) )
133 eqidd ( ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑒𝑛 ) = ( 𝑒𝑛 ) )
134 2 ad2antrr ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) )
135 58 sselda ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → 𝑦𝑆 )
136 134 135 ffvelrnd ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → ( 𝑀𝑦 ) ∈ ( 0 [,] +∞ ) )
137 136 ad4ant14 ( ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) ∧ 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ) → ( 𝑀𝑦 ) ∈ ( 0 [,] +∞ ) )
138 46 101 sylan ( ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) ∧ 𝑦 = ∅ ) → ( 𝑀𝑦 ) = 0 )
139 125 128 129 131 132 62 133 137 138 sge0fodjrn ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( Σ^ ‘ ( 𝑦 ∈ ( 𝑥 ∪ { ∅ } ) ↦ ( 𝑀𝑦 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒𝑛 ) ) ) ) )
140 124 139 eqtr2d ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
141 140 adantllr ( ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑀 ‘ ( 𝑒𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
142 45 64 141 3eqtrd ( ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) ∧ 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
143 40 41 42 142 syl21anc ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) ∧ ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
144 143 ex ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) → ( ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) )
145 144 exlimdv ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ Disj 𝑦𝑥 𝑦 ) → ( ∃ 𝑒 ( 𝑒 : ℕ –onto→ ( 𝑥 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) )
146 30 39 145 sylc ( ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) ∧ ¬ 𝑥 = ∅ ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
147 27 146 pm2.61dan ( ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) ∧ ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) )
148 147 ex ( ( 𝜑𝑥 ∈ 𝒫 dom 𝑀 ) → ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) )
149 148 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) )
150 9 3 149 jca31 ( 𝜑 → ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) ) )
151 ismea ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) ) )
152 150 151 sylibr ( 𝜑𝑀 ∈ Meas )