Step |
Hyp |
Ref |
Expression |
1 |
|
ismeannd.sal |
|
2 |
|
ismeannd.mf |
|
3 |
|
ismeannd.m0 |
|
4 |
|
ismeannd.iun |
|
5 |
2
|
fdmd |
|
6 |
5
|
feq2d |
|
7 |
2 6
|
mpbird |
|
8 |
5 1
|
eqeltrd |
|
9 |
7 8
|
jca |
|
10 |
|
unieq |
|
11 |
|
uni0 |
|
12 |
11
|
a1i |
|
13 |
10 12
|
eqtrd |
|
14 |
13
|
fveq2d |
|
15 |
14 3
|
sylan9eqr |
|
16 |
|
reseq2 |
|
17 |
|
res0 |
|
18 |
17
|
a1i |
|
19 |
16 18
|
eqtrd |
|
20 |
19
|
fveq2d |
|
21 |
20
|
adantl |
|
22 |
|
sge00 |
|
23 |
22
|
a1i |
|
24 |
21 23
|
eqtrd |
|
25 |
15 24
|
eqtr4d |
|
26 |
25
|
adantlr |
|
27 |
26
|
adantlr |
|
28 |
|
simpll |
|
29 |
|
simplrr |
|
30 |
28 29
|
jca |
|
31 |
|
simplrl |
|
32 |
|
neqne |
|
33 |
32
|
adantl |
|
34 |
|
id |
|
35 |
34
|
cbvdisjv |
|
36 |
35
|
biimpi |
|
37 |
36
|
adantl |
|
38 |
37
|
ad2antlr |
|
39 |
31 33 38
|
nnfoctbdj |
|
40 |
|
simpl |
|
41 |
|
simprl |
|
42 |
|
simprr |
|
43 |
|
founiiun0 |
|
44 |
43
|
fveq2d |
|
45 |
44
|
ad2antlr |
|
46 |
|
simplll |
|
47 |
|
fof |
|
48 |
47
|
adantl |
|
49 |
|
elpwi |
|
50 |
49
|
adantl |
|
51 |
5
|
adantr |
|
52 |
50 51
|
sseqtrd |
|
53 |
|
0sal |
|
54 |
1 53
|
syl |
|
55 |
|
snssi |
|
56 |
54 55
|
syl |
|
57 |
56
|
adantr |
|
58 |
52 57
|
unssd |
|
59 |
58
|
adantr |
|
60 |
48 59
|
fssd |
|
61 |
60
|
adantr |
|
62 |
|
simpr |
|
63 |
46 61 62 4
|
syl3anc |
|
64 |
63
|
adantllr |
|
65 |
2
|
feqmptd |
|
66 |
65
|
reseq1d |
|
67 |
66
|
adantr |
|
68 |
67
|
adantr |
|
69 |
52
|
resmptd |
|
70 |
69
|
adantr |
|
71 |
|
snssi |
|
72 |
|
ssequn2 |
|
73 |
71 72
|
sylib |
|
74 |
73
|
eqcomd |
|
75 |
74
|
mpteq1d |
|
76 |
75
|
adantl |
|
77 |
68 70 76
|
3eqtrd |
|
78 |
77
|
fveq2d |
|
79 |
|
nfv |
|
80 |
|
simplr |
|
81 |
|
p0ex |
|
82 |
81
|
a1i |
|
83 |
|
disjsn |
|
84 |
83
|
biimpri |
|
85 |
84
|
adantl |
|
86 |
2
|
ad2antrr |
|
87 |
52
|
sselda |
|
88 |
86 87
|
ffvelrnd |
|
89 |
88
|
adantlr |
|
90 |
|
elsni |
|
91 |
90
|
fveq2d |
|
92 |
91
|
adantl |
|
93 |
2 54
|
ffvelrnd |
|
94 |
93
|
adantr |
|
95 |
92 94
|
eqeltrd |
|
96 |
95
|
ad4ant14 |
|
97 |
79 80 82 85 89 96
|
sge0splitmpt |
|
98 |
|
fveq2 |
|
99 |
98
|
adantl |
|
100 |
3
|
adantr |
|
101 |
99 100
|
eqtrd |
|
102 |
90 101
|
sylan2 |
|
103 |
102
|
mpteq2dva |
|
104 |
103
|
fveq2d |
|
105 |
|
nfv |
|
106 |
81
|
a1i |
|
107 |
105 106
|
sge0z |
|
108 |
104 107
|
eqtrd |
|
109 |
108
|
oveq2d |
|
110 |
109
|
ad2antrr |
|
111 |
|
simpr |
|
112 |
67 69
|
eqtrd |
|
113 |
2
|
adantr |
|
114 |
113 52
|
fssresd |
|
115 |
112 114
|
feq1dd |
|
116 |
111 115
|
sge0xrcl |
|
117 |
116
|
xaddid1d |
|
118 |
112
|
fveq2d |
|
119 |
118
|
eqcomd |
|
120 |
117 119
|
eqtrd |
|
121 |
120
|
adantr |
|
122 |
97 110 121
|
3eqtrrd |
|
123 |
78 122
|
pm2.61dan |
|
124 |
123
|
ad2antrr |
|
125 |
|
nfv |
|
126 |
|
nfv |
|
127 |
|
nfdisj1 |
|
128 |
126 127
|
nfan |
|
129 |
|
fveq2 |
|
130 |
|
nnex |
|
131 |
130
|
a1i |
|
132 |
|
simplr |
|
133 |
|
eqidd |
|
134 |
2
|
ad2antrr |
|
135 |
58
|
sselda |
|
136 |
134 135
|
ffvelrnd |
|
137 |
136
|
ad4ant14 |
|
138 |
46 101
|
sylan |
|
139 |
125 128 129 131 132 62 133 137 138
|
sge0fodjrn |
|
140 |
124 139
|
eqtr2d |
|
141 |
140
|
adantllr |
|
142 |
45 64 141
|
3eqtrd |
|
143 |
40 41 42 142
|
syl21anc |
|
144 |
143
|
ex |
|
145 |
144
|
exlimdv |
|
146 |
30 39 145
|
sylc |
|
147 |
27 146
|
pm2.61dan |
|
148 |
147
|
ex |
|
149 |
148
|
ralrimiva |
|
150 |
9 3 149
|
jca31 |
|
151 |
|
ismea |
|
152 |
150 151
|
sylibr |
|