Step |
Hyp |
Ref |
Expression |
1 |
|
uniiun |
|
2 |
|
elun1 |
|
3 |
|
foelrni |
|
4 |
2 3
|
sylan2 |
|
5 |
|
eqimss2 |
|
6 |
5
|
reximi |
|
7 |
4 6
|
syl |
|
8 |
7
|
ralrimiva |
|
9 |
|
iunss2 |
|
10 |
8 9
|
syl |
|
11 |
|
simpl |
|
12 |
|
uneq1 |
|
13 |
|
0un |
|
14 |
12 13
|
eqtrdi |
|
15 |
14
|
adantl |
|
16 |
|
foeq3 |
|
17 |
15 16
|
syl |
|
18 |
11 17
|
mpbid |
|
19 |
|
founiiun |
|
20 |
|
unisn0 |
|
21 |
19 20
|
eqtr3di |
|
22 |
|
0ss |
|
23 |
21 22
|
eqsstrdi |
|
24 |
18 23
|
syl |
|
25 |
|
ssid |
|
26 |
|
sseq2 |
|
27 |
26
|
rspcev |
|
28 |
25 27
|
mpan2 |
|
29 |
28
|
adantl |
|
30 |
|
fof |
|
31 |
30
|
ffvelrnda |
|
32 |
|
elunnel1 |
|
33 |
31 32
|
sylan |
|
34 |
|
elsni |
|
35 |
33 34
|
syl |
|
36 |
35
|
adantllr |
|
37 |
|
neq0 |
|
38 |
37
|
biimpi |
|
39 |
38
|
adantr |
|
40 |
|
id |
|
41 |
|
0ss |
|
42 |
40 41
|
eqsstrdi |
|
43 |
42
|
anim1ci |
|
44 |
43
|
ex |
|
45 |
44
|
adantl |
|
46 |
45
|
eximdv |
|
47 |
39 46
|
mpd |
|
48 |
|
df-rex |
|
49 |
47 48
|
sylibr |
|
50 |
49
|
ad4ant24 |
|
51 |
36 50
|
syldan |
|
52 |
29 51
|
pm2.61dan |
|
53 |
52
|
ralrimiva |
|
54 |
|
iunss2 |
|
55 |
53 54
|
syl |
|
56 |
24 55
|
pm2.61dan |
|
57 |
10 56
|
eqssd |
|
58 |
1 57
|
eqtrid |
|