| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meaiunlelem.1 |
|
| 2 |
|
meaiunlelem.m |
|
| 3 |
|
meaiunlelem.s |
|
| 4 |
|
meaiunlelem.z |
|
| 5 |
|
meaiunlelem.e |
|
| 6 |
|
meaiunlelem.f |
|
| 7 |
1 4 5 6
|
iundjiun |
|
| 8 |
7
|
simplrd |
|
| 9 |
8
|
eqcomd |
|
| 10 |
9
|
fveq2d |
|
| 11 |
2 3
|
dmmeasal |
|
| 12 |
11
|
adantr |
|
| 13 |
5
|
ffvelcdmda |
|
| 14 |
|
fzofi |
|
| 15 |
|
isfinite |
|
| 16 |
15
|
biimpi |
|
| 17 |
|
sdomdom |
|
| 18 |
16 17
|
syl |
|
| 19 |
14 18
|
ax-mp |
|
| 20 |
19
|
a1i |
|
| 21 |
5
|
adantr |
|
| 22 |
|
elfzouz |
|
| 23 |
4
|
eqcomi |
|
| 24 |
22 23
|
eleqtrdi |
|
| 25 |
24
|
adantl |
|
| 26 |
21 25
|
ffvelcdmd |
|
| 27 |
11 20 26
|
saliuncl |
|
| 28 |
27
|
adantr |
|
| 29 |
|
saldifcl2 |
|
| 30 |
12 13 28 29
|
syl3anc |
|
| 31 |
1 30 6
|
fmptdf |
|
| 32 |
31
|
ffvelcdmda |
|
| 33 |
|
eqid |
|
| 34 |
33
|
uzct |
|
| 35 |
4 34
|
eqbrtri |
|
| 36 |
35
|
a1i |
|
| 37 |
7
|
simprd |
|
| 38 |
1 2 3 32 36 37
|
meadjiun |
|
| 39 |
|
eqidd |
|
| 40 |
10 38 39
|
3eqtrd |
|
| 41 |
4
|
fvexi |
|
| 42 |
41
|
a1i |
|
| 43 |
2
|
adantr |
|
| 44 |
43 3 32
|
meacl |
|
| 45 |
43 3 13
|
meacl |
|
| 46 |
|
simpr |
|
| 47 |
13
|
difexd |
|
| 48 |
6
|
fvmpt2 |
|
| 49 |
46 47 48
|
syl2anc |
|
| 50 |
|
difssd |
|
| 51 |
49 50
|
eqsstrd |
|
| 52 |
43 3 32 13 51
|
meassle |
|
| 53 |
1 42 44 45 52
|
sge0lempt |
|
| 54 |
40 53
|
eqbrtrd |
|