| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meaiunlelem.1 |
|- F/ n ph |
| 2 |
|
meaiunlelem.m |
|- ( ph -> M e. Meas ) |
| 3 |
|
meaiunlelem.s |
|- S = dom M |
| 4 |
|
meaiunlelem.z |
|- Z = ( ZZ>= ` N ) |
| 5 |
|
meaiunlelem.e |
|- ( ph -> E : Z --> S ) |
| 6 |
|
meaiunlelem.f |
|- F = ( n e. Z |-> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) |
| 7 |
1 4 5 6
|
iundjiun |
|- ( ph -> ( ( A. x e. Z U_ n e. ( N ... x ) ( F ` n ) = U_ n e. ( N ... x ) ( E ` n ) /\ U_ n e. Z ( F ` n ) = U_ n e. Z ( E ` n ) ) /\ Disj_ n e. Z ( F ` n ) ) ) |
| 8 |
7
|
simplrd |
|- ( ph -> U_ n e. Z ( F ` n ) = U_ n e. Z ( E ` n ) ) |
| 9 |
8
|
eqcomd |
|- ( ph -> U_ n e. Z ( E ` n ) = U_ n e. Z ( F ` n ) ) |
| 10 |
9
|
fveq2d |
|- ( ph -> ( M ` U_ n e. Z ( E ` n ) ) = ( M ` U_ n e. Z ( F ` n ) ) ) |
| 11 |
2 3
|
dmmeasal |
|- ( ph -> S e. SAlg ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ n e. Z ) -> S e. SAlg ) |
| 13 |
5
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) e. S ) |
| 14 |
|
fzofi |
|- ( N ..^ n ) e. Fin |
| 15 |
|
isfinite |
|- ( ( N ..^ n ) e. Fin <-> ( N ..^ n ) ~< _om ) |
| 16 |
15
|
biimpi |
|- ( ( N ..^ n ) e. Fin -> ( N ..^ n ) ~< _om ) |
| 17 |
|
sdomdom |
|- ( ( N ..^ n ) ~< _om -> ( N ..^ n ) ~<_ _om ) |
| 18 |
16 17
|
syl |
|- ( ( N ..^ n ) e. Fin -> ( N ..^ n ) ~<_ _om ) |
| 19 |
14 18
|
ax-mp |
|- ( N ..^ n ) ~<_ _om |
| 20 |
19
|
a1i |
|- ( ph -> ( N ..^ n ) ~<_ _om ) |
| 21 |
5
|
adantr |
|- ( ( ph /\ i e. ( N ..^ n ) ) -> E : Z --> S ) |
| 22 |
|
elfzouz |
|- ( i e. ( N ..^ n ) -> i e. ( ZZ>= ` N ) ) |
| 23 |
4
|
eqcomi |
|- ( ZZ>= ` N ) = Z |
| 24 |
22 23
|
eleqtrdi |
|- ( i e. ( N ..^ n ) -> i e. Z ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ i e. ( N ..^ n ) ) -> i e. Z ) |
| 26 |
21 25
|
ffvelcdmd |
|- ( ( ph /\ i e. ( N ..^ n ) ) -> ( E ` i ) e. S ) |
| 27 |
11 20 26
|
saliuncl |
|- ( ph -> U_ i e. ( N ..^ n ) ( E ` i ) e. S ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ n e. Z ) -> U_ i e. ( N ..^ n ) ( E ` i ) e. S ) |
| 29 |
|
saldifcl2 |
|- ( ( S e. SAlg /\ ( E ` n ) e. S /\ U_ i e. ( N ..^ n ) ( E ` i ) e. S ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. S ) |
| 30 |
12 13 28 29
|
syl3anc |
|- ( ( ph /\ n e. Z ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. S ) |
| 31 |
1 30 6
|
fmptdf |
|- ( ph -> F : Z --> S ) |
| 32 |
31
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. S ) |
| 33 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
| 34 |
33
|
uzct |
|- ( ZZ>= ` N ) ~<_ _om |
| 35 |
4 34
|
eqbrtri |
|- Z ~<_ _om |
| 36 |
35
|
a1i |
|- ( ph -> Z ~<_ _om ) |
| 37 |
7
|
simprd |
|- ( ph -> Disj_ n e. Z ( F ` n ) ) |
| 38 |
1 2 3 32 36 37
|
meadjiun |
|- ( ph -> ( M ` U_ n e. Z ( F ` n ) ) = ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) ) |
| 39 |
|
eqidd |
|- ( ph -> ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) = ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) ) |
| 40 |
10 38 39
|
3eqtrd |
|- ( ph -> ( M ` U_ n e. Z ( E ` n ) ) = ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) ) |
| 41 |
4
|
fvexi |
|- Z e. _V |
| 42 |
41
|
a1i |
|- ( ph -> Z e. _V ) |
| 43 |
2
|
adantr |
|- ( ( ph /\ n e. Z ) -> M e. Meas ) |
| 44 |
43 3 32
|
meacl |
|- ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) e. ( 0 [,] +oo ) ) |
| 45 |
43 3 13
|
meacl |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
| 46 |
|
simpr |
|- ( ( ph /\ n e. Z ) -> n e. Z ) |
| 47 |
13
|
difexd |
|- ( ( ph /\ n e. Z ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. _V ) |
| 48 |
6
|
fvmpt2 |
|- ( ( n e. Z /\ ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. _V ) -> ( F ` n ) = ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) |
| 49 |
46 47 48
|
syl2anc |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) = ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) |
| 50 |
|
difssd |
|- ( ( ph /\ n e. Z ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) C_ ( E ` n ) ) |
| 51 |
49 50
|
eqsstrd |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) C_ ( E ` n ) ) |
| 52 |
43 3 32 13 51
|
meassle |
|- ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) <_ ( M ` ( E ` n ) ) ) |
| 53 |
1 42 44 45 52
|
sge0lempt |
|- ( ph -> ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) <_ ( sum^ ` ( n e. Z |-> ( M ` ( E ` n ) ) ) ) ) |
| 54 |
40 53
|
eqbrtrd |
|- ( ph -> ( M ` U_ n e. Z ( E ` n ) ) <_ ( sum^ ` ( n e. Z |-> ( M ` ( E ` n ) ) ) ) ) |