| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iundjiun.nph |
|
| 2 |
|
iundjiun.z |
|
| 3 |
|
iundjiun.e |
|
| 4 |
|
iundjiun.f |
|
| 5 |
|
eliun |
|
| 6 |
5
|
biimpi |
|
| 7 |
6
|
adantl |
|
| 8 |
|
nfcv |
|
| 9 |
|
nfiu1 |
|
| 10 |
8 9
|
nfel |
|
| 11 |
|
simp2 |
|
| 12 |
|
simpl |
|
| 13 |
|
elfzuz |
|
| 14 |
2
|
eqcomi |
|
| 15 |
13 14
|
eleqtrdi |
|
| 16 |
15
|
adantl |
|
| 17 |
|
simpr |
|
| 18 |
3
|
ffvelcdmda |
|
| 19 |
18
|
difexd |
|
| 20 |
4
|
fvmpt2 |
|
| 21 |
17 19 20
|
syl2anc |
|
| 22 |
|
difssd |
|
| 23 |
21 22
|
eqsstrd |
|
| 24 |
12 16 23
|
syl2anc |
|
| 25 |
24
|
3adant3 |
|
| 26 |
|
simp3 |
|
| 27 |
25 26
|
sseldd |
|
| 28 |
|
rspe |
|
| 29 |
11 27 28
|
syl2anc |
|
| 30 |
|
eliun |
|
| 31 |
29 30
|
sylibr |
|
| 32 |
31
|
3exp |
|
| 33 |
1 10 32
|
rexlimd |
|
| 34 |
33
|
adantr |
|
| 35 |
7 34
|
mpd |
|
| 36 |
35
|
ralrimiva |
|
| 37 |
|
dfss3 |
|
| 38 |
36 37
|
sylibr |
|
| 39 |
|
fzssuz |
|
| 40 |
39
|
a1i |
|
| 41 |
30
|
biimpi |
|
| 42 |
|
nfv |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
eleq2d |
|
| 45 |
42 44
|
uzwo4 |
|
| 46 |
40 41 45
|
syl2anc |
|
| 47 |
46
|
adantl |
|
| 48 |
|
simprl |
|
| 49 |
|
nfv |
|
| 50 |
|
nfra1 |
|
| 51 |
49 50
|
nfan |
|
| 52 |
|
elfzoelz |
|
| 53 |
52
|
zred |
|
| 54 |
53
|
adantl |
|
| 55 |
|
elfzelz |
|
| 56 |
55
|
zred |
|
| 57 |
56
|
adantr |
|
| 58 |
|
1red |
|
| 59 |
57 58
|
resubcld |
|
| 60 |
|
elfzolem1 |
|
| 61 |
60
|
adantl |
|
| 62 |
57
|
ltm1d |
|
| 63 |
54 59 57 61 62
|
lelttrd |
|
| 64 |
63
|
ad4ant24 |
|
| 65 |
|
simplr |
|
| 66 |
|
elfzel1 |
|
| 67 |
66
|
adantr |
|
| 68 |
|
elfzel2 |
|
| 69 |
68
|
adantr |
|
| 70 |
52
|
adantl |
|
| 71 |
|
elfzole1 |
|
| 72 |
71
|
adantl |
|
| 73 |
69
|
zred |
|
| 74 |
|
1red |
|
| 75 |
56 74
|
resubcld |
|
| 76 |
68
|
zred |
|
| 77 |
56
|
ltm1d |
|
| 78 |
|
elfzle2 |
|
| 79 |
75 56 76 77 78
|
ltletrd |
|
| 80 |
79
|
adantr |
|
| 81 |
54 59 73 61 80
|
lelttrd |
|
| 82 |
54 73 81
|
ltled |
|
| 83 |
67 69 70 72 82
|
elfzd |
|
| 84 |
83
|
adantlr |
|
| 85 |
|
rspa |
|
| 86 |
65 84 85
|
syl2anc |
|
| 87 |
86
|
adantlll |
|
| 88 |
64 87
|
mpd |
|
| 89 |
88
|
ex |
|
| 90 |
51 89
|
ralrimi |
|
| 91 |
|
ralnex |
|
| 92 |
90 91
|
sylib |
|
| 93 |
|
eliun |
|
| 94 |
92 93
|
sylnibr |
|
| 95 |
94
|
adantrl |
|
| 96 |
48 95
|
eldifd |
|
| 97 |
16 21
|
syldan |
|
| 98 |
97
|
eqcomd |
|
| 99 |
98
|
adantr |
|
| 100 |
96 99
|
eleqtrd |
|
| 101 |
100
|
ex |
|
| 102 |
101
|
ex |
|
| 103 |
1 102
|
reximdai |
|
| 104 |
103
|
adantr |
|
| 105 |
47 104
|
mpd |
|
| 106 |
105 5
|
sylibr |
|
| 107 |
38 106
|
eqelssd |
|
| 108 |
107
|
ralrimivw |
|
| 109 |
2
|
iuneqfzuz |
|
| 110 |
108 109
|
syl |
|
| 111 |
|
fveq2 |
|
| 112 |
|
oveq2 |
|
| 113 |
112
|
iuneq1d |
|
| 114 |
111 113
|
difeq12d |
|
| 115 |
114
|
cbvmptv |
|
| 116 |
4 115
|
eqtri |
|
| 117 |
|
simpllr |
|
| 118 |
|
simplr |
|
| 119 |
|
simpr |
|
| 120 |
2 116 117 118 119
|
iundjiunlem |
|
| 121 |
120
|
adantlr |
|
| 122 |
|
simpll |
|
| 123 |
|
neqne |
|
| 124 |
|
id |
|
| 125 |
124 2
|
eleqtrdi |
|
| 126 |
|
eluzelz |
|
| 127 |
125 126
|
syl |
|
| 128 |
127
|
zred |
|
| 129 |
128
|
adantl |
|
| 130 |
129
|
ad2antrr |
|
| 131 |
|
id |
|
| 132 |
131 2
|
eleqtrdi |
|
| 133 |
|
eluzelz |
|
| 134 |
132 133
|
syl |
|
| 135 |
134
|
zred |
|
| 136 |
135
|
ad3antrrr |
|
| 137 |
|
simpr |
|
| 138 |
129
|
adantr |
|
| 139 |
135
|
ad2antrr |
|
| 140 |
138 139
|
lenltd |
|
| 141 |
137 140
|
mpbird |
|
| 142 |
141
|
adantlr |
|
| 143 |
|
simplr |
|
| 144 |
130 136 142 143
|
leneltd |
|
| 145 |
123 144
|
sylanl2 |
|
| 146 |
145
|
ad5ant2345 |
|
| 147 |
|
anass |
|
| 148 |
|
incom |
|
| 149 |
148
|
a1i |
|
| 150 |
|
simplrr |
|
| 151 |
|
simplrl |
|
| 152 |
|
simpr |
|
| 153 |
2 116 150 151 152
|
iundjiunlem |
|
| 154 |
149 153
|
eqtrd |
|
| 155 |
147 154
|
sylanb |
|
| 156 |
122 146 155
|
syl2anc |
|
| 157 |
121 156
|
pm2.61dan |
|
| 158 |
157
|
ex |
|
| 159 |
|
df-or |
|
| 160 |
158 159
|
sylibr |
|
| 161 |
160
|
ralrimiva |
|
| 162 |
161
|
ex |
|
| 163 |
1 162
|
ralrimi |
|
| 164 |
|
nfcv |
|
| 165 |
|
nfmpt1 |
|
| 166 |
4 165
|
nfcxfr |
|
| 167 |
|
nfcv |
|
| 168 |
166 167
|
nffv |
|
| 169 |
|
fveq2 |
|
| 170 |
164 168 169
|
cbvdisj |
|
| 171 |
|
fveq2 |
|
| 172 |
171
|
disjor |
|
| 173 |
|
nfcv |
|
| 174 |
|
nfv |
|
| 175 |
|
nfcv |
|
| 176 |
166 175
|
nffv |
|
| 177 |
168 176
|
nfin |
|
| 178 |
|
nfcv |
|
| 179 |
177 178
|
nfeq |
|
| 180 |
174 179
|
nfor |
|
| 181 |
173 180
|
nfralw |
|
| 182 |
|
nfv |
|
| 183 |
|
equequ1 |
|
| 184 |
|
fveq2 |
|
| 185 |
184
|
ineq1d |
|
| 186 |
185
|
eqeq1d |
|
| 187 |
183 186
|
orbi12d |
|
| 188 |
187
|
ralbidv |
|
| 189 |
181 182 188
|
cbvralw |
|
| 190 |
170 172 189
|
3bitri |
|
| 191 |
163 190
|
sylibr |
|
| 192 |
108 110 191
|
jca31 |
|