Metamath Proof Explorer


Theorem iundjiun

Description: Given a sequence E of sets, a sequence F of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses iundjiun.nph n φ
iundjiun.z Z = N
iundjiun.e φ E : Z V
iundjiun.f F = n Z E n i N ..^ n E i
Assertion iundjiun φ m Z n = N m F n = n = N m E n n Z F n = n Z E n Disj n Z F n

Proof

Step Hyp Ref Expression
1 iundjiun.nph n φ
2 iundjiun.z Z = N
3 iundjiun.e φ E : Z V
4 iundjiun.f F = n Z E n i N ..^ n E i
5 eliun x n = N m F n n N m x F n
6 5 biimpi x n = N m F n n N m x F n
7 6 adantl φ x n = N m F n n N m x F n
8 nfcv _ n x
9 nfiu1 _ n n = N m E n
10 8 9 nfel n x n = N m E n
11 simp2 φ n N m x F n n N m
12 simpl φ n N m φ
13 elfzuz n N m n N
14 2 eqcomi N = Z
15 13 14 eleqtrdi n N m n Z
16 15 adantl φ n N m n Z
17 simpr φ n Z n Z
18 3 ffvelrnda φ n Z E n V
19 difexg E n V E n i N ..^ n E i V
20 18 19 syl φ n Z E n i N ..^ n E i V
21 4 fvmpt2 n Z E n i N ..^ n E i V F n = E n i N ..^ n E i
22 17 20 21 syl2anc φ n Z F n = E n i N ..^ n E i
23 difssd φ n Z E n i N ..^ n E i E n
24 22 23 eqsstrd φ n Z F n E n
25 12 16 24 syl2anc φ n N m F n E n
26 25 3adant3 φ n N m x F n F n E n
27 simp3 φ n N m x F n x F n
28 26 27 sseldd φ n N m x F n x E n
29 rspe n N m x E n n N m x E n
30 11 28 29 syl2anc φ n N m x F n n N m x E n
31 eliun x n = N m E n n N m x E n
32 30 31 sylibr φ n N m x F n x n = N m E n
33 32 3exp φ n N m x F n x n = N m E n
34 1 10 33 rexlimd φ n N m x F n x n = N m E n
35 34 adantr φ x n = N m F n n N m x F n x n = N m E n
36 7 35 mpd φ x n = N m F n x n = N m E n
37 36 ralrimiva φ x n = N m F n x n = N m E n
38 dfss3 n = N m F n n = N m E n x n = N m F n x n = N m E n
39 37 38 sylibr φ n = N m F n n = N m E n
40 fzssuz N m N
41 40 a1i x n = N m E n N m N
42 31 biimpi x n = N m E n n N m x E n
43 nfv n x E i
44 fveq2 n = i E n = E i
45 44 eleq2d n = i x E n x E i
46 43 45 uzwo4 N m N n N m x E n n N m x E n i N m i < n ¬ x E i
47 41 42 46 syl2anc x n = N m E n n N m x E n i N m i < n ¬ x E i
48 47 adantl φ x n = N m E n n N m x E n i N m i < n ¬ x E i
49 simprl φ n N m x E n i N m i < n ¬ x E i x E n
50 nfv i φ n N m
51 nfra1 i i N m i < n ¬ x E i
52 50 51 nfan i φ n N m i N m i < n ¬ x E i
53 elfzoelz i N ..^ n i
54 53 zred i N ..^ n i
55 54 adantl n N m i N ..^ n i
56 elfzelz n N m n
57 56 zred n N m n
58 57 adantr n N m i N ..^ n n
59 1red n N m i N ..^ n 1
60 58 59 resubcld n N m i N ..^ n n 1
61 elfzolem1 i N ..^ n i n 1
62 61 adantl n N m i N ..^ n i n 1
63 58 ltm1d n N m i N ..^ n n 1 < n
64 55 60 58 62 63 lelttrd n N m i N ..^ n i < n
65 64 ad4ant24 φ n N m i N m i < n ¬ x E i i N ..^ n i < n
66 simplr n N m i N m i < n ¬ x E i i N ..^ n i N m i < n ¬ x E i
67 elfzel1 n N m N
68 67 adantr n N m i N ..^ n N
69 elfzel2 n N m m
70 69 adantr n N m i N ..^ n m
71 53 adantl n N m i N ..^ n i
72 68 70 71 3jca n N m i N ..^ n N m i
73 elfzole1 i N ..^ n N i
74 73 adantl n N m i N ..^ n N i
75 70 zred n N m i N ..^ n m
76 1red n N m 1
77 57 76 resubcld n N m n 1
78 69 zred n N m m
79 57 ltm1d n N m n 1 < n
80 elfzle2 n N m n m
81 77 57 78 79 80 ltletrd n N m n 1 < m
82 81 adantr n N m i N ..^ n n 1 < m
83 55 60 75 62 82 lelttrd n N m i N ..^ n i < m
84 55 75 83 ltled n N m i N ..^ n i m
85 72 74 84 jca32 n N m i N ..^ n N m i N i i m
86 elfz2 i N m N m i N i i m
87 85 86 sylibr n N m i N ..^ n i N m
88 87 adantlr n N m i N m i < n ¬ x E i i N ..^ n i N m
89 rspa i N m i < n ¬ x E i i N m i < n ¬ x E i
90 66 88 89 syl2anc n N m i N m i < n ¬ x E i i N ..^ n i < n ¬ x E i
91 90 adantlll φ n N m i N m i < n ¬ x E i i N ..^ n i < n ¬ x E i
92 65 91 mpd φ n N m i N m i < n ¬ x E i i N ..^ n ¬ x E i
93 92 ex φ n N m i N m i < n ¬ x E i i N ..^ n ¬ x E i
94 52 93 ralrimi φ n N m i N m i < n ¬ x E i i N ..^ n ¬ x E i
95 ralnex i N ..^ n ¬ x E i ¬ i N ..^ n x E i
96 94 95 sylib φ n N m i N m i < n ¬ x E i ¬ i N ..^ n x E i
97 eliun x i N ..^ n E i i N ..^ n x E i
98 96 97 sylnibr φ n N m i N m i < n ¬ x E i ¬ x i N ..^ n E i
99 98 adantrl φ n N m x E n i N m i < n ¬ x E i ¬ x i N ..^ n E i
100 49 99 eldifd φ n N m x E n i N m i < n ¬ x E i x E n i N ..^ n E i
101 16 22 syldan φ n N m F n = E n i N ..^ n E i
102 101 eqcomd φ n N m E n i N ..^ n E i = F n
103 102 adantr φ n N m x E n i N m i < n ¬ x E i E n i N ..^ n E i = F n
104 100 103 eleqtrd φ n N m x E n i N m i < n ¬ x E i x F n
105 104 ex φ n N m x E n i N m i < n ¬ x E i x F n
106 105 ex φ n N m x E n i N m i < n ¬ x E i x F n
107 1 106 reximdai φ n N m x E n i N m i < n ¬ x E i n N m x F n
108 107 adantr φ x n = N m E n n N m x E n i N m i < n ¬ x E i n N m x F n
109 48 108 mpd φ x n = N m E n n N m x F n
110 109 5 sylibr φ x n = N m E n x n = N m F n
111 39 110 eqelssd φ n = N m F n = n = N m E n
112 111 ralrimivw φ m Z n = N m F n = n = N m E n
113 2 iuneqfzuz m Z n = N m F n = n = N m E n n Z F n = n Z E n
114 112 113 syl φ n Z F n = n Z E n
115 fveq2 n = m E n = E m
116 oveq2 n = m N ..^ n = N ..^ m
117 116 iuneq1d n = m i N ..^ n E i = i N ..^ m E i
118 115 117 difeq12d n = m E n i N ..^ n E i = E m i N ..^ m E i
119 118 cbvmptv n Z E n i N ..^ n E i = m Z E m i N ..^ m E i
120 4 119 eqtri F = m Z E m i N ..^ m E i
121 simpllr φ n Z k Z n < k n Z
122 simplr φ n Z k Z n < k k Z
123 simpr φ n Z k Z n < k n < k
124 2 120 121 122 123 iundjiunlem φ n Z k Z n < k F n F k =
125 124 adantlr φ n Z k Z ¬ n = k n < k F n F k =
126 simpll φ n Z k Z ¬ n = k ¬ n < k φ n Z k Z
127 neqne ¬ n = k n k
128 id k Z k Z
129 128 2 eleqtrdi k Z k N
130 eluzelz k N k
131 129 130 syl k Z k
132 131 zred k Z k
133 132 adantl n Z k Z k
134 133 ad2antrr n Z k Z n k ¬ n < k k
135 id n Z n Z
136 135 2 eleqtrdi n Z n N
137 eluzelz n N n
138 136 137 syl n Z n
139 138 zred n Z n
140 139 ad3antrrr n Z k Z n k ¬ n < k n
141 simpr n Z k Z ¬ n < k ¬ n < k
142 133 adantr n Z k Z ¬ n < k k
143 139 ad2antrr n Z k Z ¬ n < k n
144 142 143 lenltd n Z k Z ¬ n < k k n ¬ n < k
145 141 144 mpbird n Z k Z ¬ n < k k n
146 145 adantlr n Z k Z n k ¬ n < k k n
147 simplr n Z k Z n k ¬ n < k n k
148 134 140 146 147 leneltd n Z k Z n k ¬ n < k k < n
149 127 148 sylanl2 n Z k Z ¬ n = k ¬ n < k k < n
150 149 ad5ant2345 φ n Z k Z ¬ n = k ¬ n < k k < n
151 anass φ n Z k Z φ n Z k Z
152 incom F n F k = F k F n
153 152 a1i φ n Z k Z k < n F n F k = F k F n
154 simplrr φ n Z k Z k < n k Z
155 simplrl φ n Z k Z k < n n Z
156 simpr φ n Z k Z k < n k < n
157 2 120 154 155 156 iundjiunlem φ n Z k Z k < n F k F n =
158 153 157 eqtrd φ n Z k Z k < n F n F k =
159 151 158 sylanb φ n Z k Z k < n F n F k =
160 126 150 159 syl2anc φ n Z k Z ¬ n = k ¬ n < k F n F k =
161 125 160 pm2.61dan φ n Z k Z ¬ n = k F n F k =
162 161 ex φ n Z k Z ¬ n = k F n F k =
163 df-or n = k F n F k = ¬ n = k F n F k =
164 162 163 sylibr φ n Z k Z n = k F n F k =
165 164 ralrimiva φ n Z k Z n = k F n F k =
166 165 ex φ n Z k Z n = k F n F k =
167 1 166 ralrimi φ n Z k Z n = k F n F k =
168 nfcv _ m F n
169 nfmpt1 _ n n Z E n i N ..^ n E i
170 4 169 nfcxfr _ n F
171 nfcv _ n m
172 170 171 nffv _ n F m
173 fveq2 n = m F n = F m
174 168 172 173 cbvdisj Disj n Z F n Disj m Z F m
175 fveq2 m = k F m = F k
176 175 disjor Disj m Z F m m Z k Z m = k F m F k =
177 nfcv _ n Z
178 nfv n m = k
179 nfcv _ n k
180 170 179 nffv _ n F k
181 172 180 nfin _ n F m F k
182 nfcv _ n
183 181 182 nfeq n F m F k =
184 178 183 nfor n m = k F m F k =
185 177 184 nfralw n k Z m = k F m F k =
186 nfv m k Z n = k F n F k =
187 equequ1 m = n m = k n = k
188 fveq2 m = n F m = F n
189 188 ineq1d m = n F m F k = F n F k
190 189 eqeq1d m = n F m F k = F n F k =
191 187 190 orbi12d m = n m = k F m F k = n = k F n F k =
192 191 ralbidv m = n k Z m = k F m F k = k Z n = k F n F k =
193 185 186 192 cbvralw m Z k Z m = k F m F k = n Z k Z n = k F n F k =
194 174 176 193 3bitri Disj n Z F n n Z k Z n = k F n F k =
195 167 194 sylibr φ Disj n Z F n
196 112 114 195 jca31 φ m Z n = N m F n = n = N m E n n Z F n = n Z E n Disj n Z F n