Step |
Hyp |
Ref |
Expression |
1 |
|
uzwo4.1 |
|
2 |
|
uzwo4.2 |
|
3 |
|
ssrab2 |
|
4 |
3
|
a1i |
|
5 |
|
id |
|
6 |
4 5
|
sstrd |
|
7 |
6
|
adantr |
|
8 |
|
rabn0 |
|
9 |
8
|
bicomi |
|
10 |
9
|
biimpi |
|
11 |
10
|
adantl |
|
12 |
|
uzwo |
|
13 |
7 11 12
|
syl2anc |
|
14 |
3
|
sseli |
|
15 |
14
|
adantr |
|
16 |
15
|
3adant1 |
|
17 |
|
nfcv |
|
18 |
|
nfcv |
|
19 |
17
|
nfsbc1 |
|
20 |
|
sbceq1a |
|
21 |
17 18 19 20
|
elrabf |
|
22 |
21
|
biimpi |
|
23 |
22
|
simprd |
|
24 |
23
|
adantr |
|
25 |
24
|
3adant1 |
|
26 |
|
nfv |
|
27 |
|
nfv |
|
28 |
|
nfra1 |
|
29 |
26 27 28
|
nf3an |
|
30 |
|
simpl13 |
|
31 |
|
simpl2 |
|
32 |
|
simpr |
|
33 |
|
simpll |
|
34 |
|
id |
|
35 |
|
nfcv |
|
36 |
35 18 1 2
|
elrabf |
|
37 |
34 36
|
sylibr |
|
38 |
37
|
adantll |
|
39 |
|
rspa |
|
40 |
33 38 39
|
syl2anc |
|
41 |
30 31 32 40
|
syl21anc |
|
42 |
6
|
sselda |
|
43 |
|
eluzelz |
|
44 |
42 43
|
syl |
|
45 |
44
|
zred |
|
46 |
45
|
3adant3 |
|
47 |
46
|
3ad2ant1 |
|
48 |
|
ssel2 |
|
49 |
|
eluzelz |
|
50 |
48 49
|
syl |
|
51 |
50
|
zred |
|
52 |
51
|
3ad2antl1 |
|
53 |
52
|
3adant3 |
|
54 |
|
simp3 |
|
55 |
|
simp3 |
|
56 |
|
simp2 |
|
57 |
|
simp1 |
|
58 |
56 57
|
ltnled |
|
59 |
55 58
|
mpbid |
|
60 |
47 53 54 59
|
syl3anc |
|
61 |
60
|
adantr |
|
62 |
41 61
|
pm2.65da |
|
63 |
62
|
3exp |
|
64 |
29 63
|
ralrimi |
|
65 |
25 64
|
jca |
|
66 |
|
nfv |
|
67 |
1
|
nfn |
|
68 |
66 67
|
nfim |
|
69 |
18 68
|
nfralw |
|
70 |
19 69
|
nfan |
|
71 |
|
breq2 |
|
72 |
71
|
imbi1d |
|
73 |
72
|
ralbidv |
|
74 |
20 73
|
anbi12d |
|
75 |
70 74
|
rspce |
|
76 |
16 65 75
|
syl2anc |
|
77 |
76
|
3exp |
|
78 |
77
|
rexlimdv |
|
79 |
78
|
adantr |
|
80 |
13 79
|
mpd |
|