| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzwo4.1 |
|
| 2 |
|
uzwo4.2 |
|
| 3 |
|
ssrab2 |
|
| 4 |
3
|
a1i |
|
| 5 |
|
id |
|
| 6 |
4 5
|
sstrd |
|
| 7 |
6
|
adantr |
|
| 8 |
|
rabn0 |
|
| 9 |
8
|
bicomi |
|
| 10 |
9
|
biimpi |
|
| 11 |
10
|
adantl |
|
| 12 |
|
uzwo |
|
| 13 |
7 11 12
|
syl2anc |
|
| 14 |
3
|
sseli |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
3adant1 |
|
| 17 |
|
nfcv |
|
| 18 |
|
nfcv |
|
| 19 |
17
|
nfsbc1 |
|
| 20 |
|
sbceq1a |
|
| 21 |
17 18 19 20
|
elrabf |
|
| 22 |
21
|
biimpi |
|
| 23 |
22
|
simprd |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
3adant1 |
|
| 26 |
|
nfv |
|
| 27 |
|
nfv |
|
| 28 |
|
nfra1 |
|
| 29 |
26 27 28
|
nf3an |
|
| 30 |
|
simpl13 |
|
| 31 |
|
simpl2 |
|
| 32 |
|
simpr |
|
| 33 |
|
simpll |
|
| 34 |
|
id |
|
| 35 |
|
nfcv |
|
| 36 |
35 18 1 2
|
elrabf |
|
| 37 |
34 36
|
sylibr |
|
| 38 |
37
|
adantll |
|
| 39 |
|
rspa |
|
| 40 |
33 38 39
|
syl2anc |
|
| 41 |
30 31 32 40
|
syl21anc |
|
| 42 |
6
|
sselda |
|
| 43 |
|
eluzelz |
|
| 44 |
42 43
|
syl |
|
| 45 |
44
|
zred |
|
| 46 |
45
|
3adant3 |
|
| 47 |
46
|
3ad2ant1 |
|
| 48 |
|
ssel2 |
|
| 49 |
|
eluzelz |
|
| 50 |
48 49
|
syl |
|
| 51 |
50
|
zred |
|
| 52 |
51
|
3ad2antl1 |
|
| 53 |
52
|
3adant3 |
|
| 54 |
|
simp3 |
|
| 55 |
|
simp3 |
|
| 56 |
|
simp2 |
|
| 57 |
|
simp1 |
|
| 58 |
56 57
|
ltnled |
|
| 59 |
55 58
|
mpbid |
|
| 60 |
47 53 54 59
|
syl3anc |
|
| 61 |
60
|
adantr |
|
| 62 |
41 61
|
pm2.65da |
|
| 63 |
62
|
3exp |
|
| 64 |
29 63
|
ralrimi |
|
| 65 |
25 64
|
jca |
|
| 66 |
|
nfv |
|
| 67 |
1
|
nfn |
|
| 68 |
66 67
|
nfim |
|
| 69 |
18 68
|
nfralw |
|
| 70 |
19 69
|
nfan |
|
| 71 |
|
breq2 |
|
| 72 |
71
|
imbi1d |
|
| 73 |
72
|
ralbidv |
|
| 74 |
20 73
|
anbi12d |
|
| 75 |
70 74
|
rspce |
|
| 76 |
16 65 75
|
syl2anc |
|
| 77 |
76
|
3exp |
|
| 78 |
77
|
rexlimdv |
|
| 79 |
78
|
adantr |
|
| 80 |
13 79
|
mpd |
|