Metamath Proof Explorer


Theorem iundjiun

Description: Given a sequence E of sets, a sequence F of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses iundjiun.nph 𝑛 𝜑
iundjiun.z 𝑍 = ( ℤ𝑁 )
iundjiun.e ( 𝜑𝐸 : 𝑍𝑉 )
iundjiun.f 𝐹 = ( 𝑛𝑍 ↦ ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
Assertion iundjiun ( 𝜑 → ( ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) = 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ∧ 𝑛𝑍 ( 𝐹𝑛 ) = 𝑛𝑍 ( 𝐸𝑛 ) ) ∧ Disj 𝑛𝑍 ( 𝐹𝑛 ) ) )

Proof

Step Hyp Ref Expression
1 iundjiun.nph 𝑛 𝜑
2 iundjiun.z 𝑍 = ( ℤ𝑁 )
3 iundjiun.e ( 𝜑𝐸 : 𝑍𝑉 )
4 iundjiun.f 𝐹 = ( 𝑛𝑍 ↦ ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
5 eliun ( 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) ↔ ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹𝑛 ) )
6 5 biimpi ( 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹𝑛 ) )
7 6 adantl ( ( 𝜑𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹𝑛 ) )
8 nfcv 𝑛 𝑥
9 nfiu1 𝑛 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 )
10 8 9 nfel 𝑛 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 )
11 simp2 ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹𝑛 ) ) → 𝑛 ∈ ( 𝑁 ... 𝑚 ) )
12 simpl ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → 𝜑 )
13 elfzuz ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛 ∈ ( ℤ𝑁 ) )
14 2 eqcomi ( ℤ𝑁 ) = 𝑍
15 13 14 eleqtrdi ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛𝑍 )
16 15 adantl ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → 𝑛𝑍 )
17 simpr ( ( 𝜑𝑛𝑍 ) → 𝑛𝑍 )
18 3 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ∈ 𝑉 )
19 18 difexd ( ( 𝜑𝑛𝑍 ) → ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) ∈ V )
20 4 fvmpt2 ( ( 𝑛𝑍 ∧ ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) ∈ V ) → ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
21 17 19 20 syl2anc ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
22 difssd ( ( 𝜑𝑛𝑍 ) → ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) ⊆ ( 𝐸𝑛 ) )
23 21 22 eqsstrd ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ⊆ ( 𝐸𝑛 ) )
24 12 16 23 syl2anc ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → ( 𝐹𝑛 ) ⊆ ( 𝐸𝑛 ) )
25 24 3adant3 ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹𝑛 ) ) → ( 𝐹𝑛 ) ⊆ ( 𝐸𝑛 ) )
26 simp3 ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹𝑛 ) ) → 𝑥 ∈ ( 𝐹𝑛 ) )
27 25 26 sseldd ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹𝑛 ) ) → 𝑥 ∈ ( 𝐸𝑛 ) )
28 rspe ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐸𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸𝑛 ) )
29 11 27 28 syl2anc ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸𝑛 ) )
30 eliun ( 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ↔ ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸𝑛 ) )
31 29 30 sylibr ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹𝑛 ) ) → 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) )
32 31 3exp ( 𝜑 → ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( 𝑥 ∈ ( 𝐹𝑛 ) → 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ) ) )
33 1 10 32 rexlimd ( 𝜑 → ( ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹𝑛 ) → 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ) )
34 33 adantr ( ( 𝜑𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) ) → ( ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹𝑛 ) → 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ) )
35 7 34 mpd ( ( 𝜑𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) ) → 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) )
36 35 ralrimiva ( 𝜑 → ∀ 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) )
37 dfss3 ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) ⊆ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ↔ ∀ 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) )
38 36 37 sylibr ( 𝜑 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) ⊆ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) )
39 fzssuz ( 𝑁 ... 𝑚 ) ⊆ ( ℤ𝑁 )
40 39 a1i ( 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) → ( 𝑁 ... 𝑚 ) ⊆ ( ℤ𝑁 ) )
41 30 biimpi ( 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸𝑛 ) )
42 nfv 𝑛 𝑥 ∈ ( 𝐸𝑖 )
43 fveq2 ( 𝑛 = 𝑖 → ( 𝐸𝑛 ) = ( 𝐸𝑖 ) )
44 43 eleq2d ( 𝑛 = 𝑖 → ( 𝑥 ∈ ( 𝐸𝑛 ) ↔ 𝑥 ∈ ( 𝐸𝑖 ) ) )
45 42 44 uzwo4 ( ( ( 𝑁 ... 𝑚 ) ⊆ ( ℤ𝑁 ) ∧ ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) )
46 40 41 45 syl2anc ( 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) )
47 46 adantl ( ( 𝜑𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) )
48 simprl ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ) → 𝑥 ∈ ( 𝐸𝑛 ) )
49 nfv 𝑖 ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) )
50 nfra1 𝑖𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) )
51 49 50 nfan 𝑖 ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) )
52 elfzoelz ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → 𝑖 ∈ ℤ )
53 52 zred ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → 𝑖 ∈ ℝ )
54 53 adantl ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ∈ ℝ )
55 elfzelz ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛 ∈ ℤ )
56 55 zred ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛 ∈ ℝ )
57 56 adantr ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑛 ∈ ℝ )
58 1red ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 1 ∈ ℝ )
59 57 58 resubcld ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑛 − 1 ) ∈ ℝ )
60 elfzolem1 ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → 𝑖 ≤ ( 𝑛 − 1 ) )
61 60 adantl ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ≤ ( 𝑛 − 1 ) )
62 57 ltm1d ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑛 − 1 ) < 𝑛 )
63 54 59 57 61 62 lelttrd ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 < 𝑛 )
64 63 ad4ant24 ( ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 < 𝑛 )
65 simplr ( ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) )
66 elfzel1 ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑁 ∈ ℤ )
67 66 adantr ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑁 ∈ ℤ )
68 elfzel2 ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑚 ∈ ℤ )
69 68 adantr ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑚 ∈ ℤ )
70 52 adantl ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ∈ ℤ )
71 elfzole1 ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → 𝑁𝑖 )
72 71 adantl ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑁𝑖 )
73 69 zred ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑚 ∈ ℝ )
74 1red ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 1 ∈ ℝ )
75 56 74 resubcld ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( 𝑛 − 1 ) ∈ ℝ )
76 68 zred ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑚 ∈ ℝ )
77 56 ltm1d ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( 𝑛 − 1 ) < 𝑛 )
78 elfzle2 ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛𝑚 )
79 75 56 76 77 78 ltletrd ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( 𝑛 − 1 ) < 𝑚 )
80 79 adantr ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑛 − 1 ) < 𝑚 )
81 54 59 73 61 80 lelttrd ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 < 𝑚 )
82 54 73 81 ltled ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖𝑚 )
83 67 69 70 72 82 elfzd ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ∈ ( 𝑁 ... 𝑚 ) )
84 83 adantlr ( ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ∈ ( 𝑁 ... 𝑚 ) )
85 rspa ( ( ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ∧ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ) → ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) )
86 65 84 85 syl2anc ( ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) )
87 86 adantlll ( ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) )
88 64 87 mpd ( ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ¬ 𝑥 ∈ ( 𝐸𝑖 ) )
89 88 ex ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) → ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) )
90 51 89 ralrimi ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) → ∀ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ¬ 𝑥 ∈ ( 𝐸𝑖 ) )
91 ralnex ( ∀ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ¬ 𝑥 ∈ ( 𝐸𝑖 ) ↔ ¬ ∃ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) 𝑥 ∈ ( 𝐸𝑖 ) )
92 90 91 sylib ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) → ¬ ∃ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) 𝑥 ∈ ( 𝐸𝑖 ) )
93 eliun ( 𝑥 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ↔ ∃ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) 𝑥 ∈ ( 𝐸𝑖 ) )
94 92 93 sylnibr ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) → ¬ 𝑥 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) )
95 94 adantrl ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ) → ¬ 𝑥 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) )
96 48 95 eldifd ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ) → 𝑥 ∈ ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
97 16 21 syldan ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
98 97 eqcomd ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) = ( 𝐹𝑛 ) )
99 98 adantr ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ) → ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) = ( 𝐹𝑛 ) )
100 96 99 eleqtrd ( ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) ) → 𝑥 ∈ ( 𝐹𝑛 ) )
101 100 ex ( ( 𝜑𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → ( ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) → 𝑥 ∈ ( 𝐹𝑛 ) ) )
102 101 ex ( 𝜑 → ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) → 𝑥 ∈ ( 𝐹𝑛 ) ) ) )
103 1 102 reximdai ( 𝜑 → ( ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹𝑛 ) ) )
104 103 adantr ( ( 𝜑𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ) → ( ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸𝑖 ) ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹𝑛 ) ) )
105 47 104 mpd ( ( 𝜑𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹𝑛 ) )
106 105 5 sylibr ( ( 𝜑𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ) → 𝑥 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) )
107 38 106 eqelssd ( 𝜑 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) = 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) )
108 107 ralrimivw ( 𝜑 → ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) = 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) )
109 2 iuneqfzuz ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) = 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) → 𝑛𝑍 ( 𝐹𝑛 ) = 𝑛𝑍 ( 𝐸𝑛 ) )
110 108 109 syl ( 𝜑 𝑛𝑍 ( 𝐹𝑛 ) = 𝑛𝑍 ( 𝐸𝑛 ) )
111 fveq2 ( 𝑛 = 𝑚 → ( 𝐸𝑛 ) = ( 𝐸𝑚 ) )
112 oveq2 ( 𝑛 = 𝑚 → ( 𝑁 ..^ 𝑛 ) = ( 𝑁 ..^ 𝑚 ) )
113 112 iuneq1d ( 𝑛 = 𝑚 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) = 𝑖 ∈ ( 𝑁 ..^ 𝑚 ) ( 𝐸𝑖 ) )
114 111 113 difeq12d ( 𝑛 = 𝑚 → ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) = ( ( 𝐸𝑚 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑚 ) ( 𝐸𝑖 ) ) )
115 114 cbvmptv ( 𝑛𝑍 ↦ ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) ) = ( 𝑚𝑍 ↦ ( ( 𝐸𝑚 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑚 ) ( 𝐸𝑖 ) ) )
116 4 115 eqtri 𝐹 = ( 𝑚𝑍 ↦ ( ( 𝐸𝑚 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑚 ) ( 𝐸𝑖 ) ) )
117 simpllr ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ 𝑛 < 𝑘 ) → 𝑛𝑍 )
118 simplr ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ 𝑛 < 𝑘 ) → 𝑘𝑍 )
119 simpr ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ 𝑛 < 𝑘 ) → 𝑛 < 𝑘 )
120 2 116 117 118 119 iundjiunlem ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ 𝑛 < 𝑘 ) → ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ )
121 120 adantlr ( ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ 𝑛 < 𝑘 ) → ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ )
122 simpll ( ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) )
123 neqne ( ¬ 𝑛 = 𝑘𝑛𝑘 )
124 id ( 𝑘𝑍𝑘𝑍 )
125 124 2 eleqtrdi ( 𝑘𝑍𝑘 ∈ ( ℤ𝑁 ) )
126 eluzelz ( 𝑘 ∈ ( ℤ𝑁 ) → 𝑘 ∈ ℤ )
127 125 126 syl ( 𝑘𝑍𝑘 ∈ ℤ )
128 127 zred ( 𝑘𝑍𝑘 ∈ ℝ )
129 128 adantl ( ( 𝑛𝑍𝑘𝑍 ) → 𝑘 ∈ ℝ )
130 129 ad2antrr ( ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ 𝑛𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 ∈ ℝ )
131 id ( 𝑛𝑍𝑛𝑍 )
132 131 2 eleqtrdi ( 𝑛𝑍𝑛 ∈ ( ℤ𝑁 ) )
133 eluzelz ( 𝑛 ∈ ( ℤ𝑁 ) → 𝑛 ∈ ℤ )
134 132 133 syl ( 𝑛𝑍𝑛 ∈ ℤ )
135 134 zred ( 𝑛𝑍𝑛 ∈ ℝ )
136 135 ad3antrrr ( ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ 𝑛𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑛 ∈ ℝ )
137 simpr ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → ¬ 𝑛 < 𝑘 )
138 129 adantr ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 ∈ ℝ )
139 135 ad2antrr ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑛 ∈ ℝ )
140 138 139 lenltd ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → ( 𝑘𝑛 ↔ ¬ 𝑛 < 𝑘 ) )
141 137 140 mpbird ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘𝑛 )
142 141 adantlr ( ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ 𝑛𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘𝑛 )
143 simplr ( ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ 𝑛𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑛𝑘 )
144 130 136 142 143 leneltd ( ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ 𝑛𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 < 𝑛 )
145 123 144 sylanl2 ( ( ( ( 𝑛𝑍𝑘𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 < 𝑛 )
146 145 ad5ant2345 ( ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 < 𝑛 )
147 anass ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ↔ ( 𝜑 ∧ ( 𝑛𝑍𝑘𝑍 ) ) )
148 incom ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ( ( 𝐹𝑘 ) ∩ ( 𝐹𝑛 ) )
149 148 a1i ( ( ( 𝜑 ∧ ( 𝑛𝑍𝑘𝑍 ) ) ∧ 𝑘 < 𝑛 ) → ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ( ( 𝐹𝑘 ) ∩ ( 𝐹𝑛 ) ) )
150 simplrr ( ( ( 𝜑 ∧ ( 𝑛𝑍𝑘𝑍 ) ) ∧ 𝑘 < 𝑛 ) → 𝑘𝑍 )
151 simplrl ( ( ( 𝜑 ∧ ( 𝑛𝑍𝑘𝑍 ) ) ∧ 𝑘 < 𝑛 ) → 𝑛𝑍 )
152 simpr ( ( ( 𝜑 ∧ ( 𝑛𝑍𝑘𝑍 ) ) ∧ 𝑘 < 𝑛 ) → 𝑘 < 𝑛 )
153 2 116 150 151 152 iundjiunlem ( ( ( 𝜑 ∧ ( 𝑛𝑍𝑘𝑍 ) ) ∧ 𝑘 < 𝑛 ) → ( ( 𝐹𝑘 ) ∩ ( 𝐹𝑛 ) ) = ∅ )
154 149 153 eqtrd ( ( ( 𝜑 ∧ ( 𝑛𝑍𝑘𝑍 ) ) ∧ 𝑘 < 𝑛 ) → ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ )
155 147 154 sylanb ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ 𝑘 < 𝑛 ) → ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ )
156 122 146 155 syl2anc ( ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ )
157 121 156 pm2.61dan ( ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) → ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ )
158 157 ex ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) → ( ¬ 𝑛 = 𝑘 → ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) )
159 df-or ( ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) ↔ ( ¬ 𝑛 = 𝑘 → ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) )
160 158 159 sylibr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘𝑍 ) → ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) )
161 160 ralrimiva ( ( 𝜑𝑛𝑍 ) → ∀ 𝑘𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) )
162 161 ex ( 𝜑 → ( 𝑛𝑍 → ∀ 𝑘𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) ) )
163 1 162 ralrimi ( 𝜑 → ∀ 𝑛𝑍𝑘𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) )
164 nfcv 𝑚 ( 𝐹𝑛 )
165 nfmpt1 𝑛 ( 𝑛𝑍 ↦ ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
166 4 165 nfcxfr 𝑛 𝐹
167 nfcv 𝑛 𝑚
168 166 167 nffv 𝑛 ( 𝐹𝑚 )
169 fveq2 ( 𝑛 = 𝑚 → ( 𝐹𝑛 ) = ( 𝐹𝑚 ) )
170 164 168 169 cbvdisj ( Disj 𝑛𝑍 ( 𝐹𝑛 ) ↔ Disj 𝑚𝑍 ( 𝐹𝑚 ) )
171 fveq2 ( 𝑚 = 𝑘 → ( 𝐹𝑚 ) = ( 𝐹𝑘 ) )
172 171 disjor ( Disj 𝑚𝑍 ( 𝐹𝑚 ) ↔ ∀ 𝑚𝑍𝑘𝑍 ( 𝑚 = 𝑘 ∨ ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) )
173 nfcv 𝑛 𝑍
174 nfv 𝑛 𝑚 = 𝑘
175 nfcv 𝑛 𝑘
176 166 175 nffv 𝑛 ( 𝐹𝑘 )
177 168 176 nfin 𝑛 ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) )
178 nfcv 𝑛
179 177 178 nfeq 𝑛 ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) ) = ∅
180 174 179 nfor 𝑛 ( 𝑚 = 𝑘 ∨ ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) ) = ∅ )
181 173 180 nfralw 𝑛𝑘𝑍 ( 𝑚 = 𝑘 ∨ ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) ) = ∅ )
182 nfv 𝑚𝑘𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ )
183 equequ1 ( 𝑚 = 𝑛 → ( 𝑚 = 𝑘𝑛 = 𝑘 ) )
184 fveq2 ( 𝑚 = 𝑛 → ( 𝐹𝑚 ) = ( 𝐹𝑛 ) )
185 184 ineq1d ( 𝑚 = 𝑛 → ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) ) = ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) )
186 185 eqeq1d ( 𝑚 = 𝑛 → ( ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) ) = ∅ ↔ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) )
187 183 186 orbi12d ( 𝑚 = 𝑛 → ( ( 𝑚 = 𝑘 ∨ ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) ↔ ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) ) )
188 187 ralbidv ( 𝑚 = 𝑛 → ( ∀ 𝑘𝑍 ( 𝑚 = 𝑘 ∨ ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) ↔ ∀ 𝑘𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) ) )
189 181 182 188 cbvralw ( ∀ 𝑚𝑍𝑘𝑍 ( 𝑚 = 𝑘 ∨ ( ( 𝐹𝑚 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) ↔ ∀ 𝑛𝑍𝑘𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) )
190 170 172 189 3bitri ( Disj 𝑛𝑍 ( 𝐹𝑛 ) ↔ ∀ 𝑛𝑍𝑘𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹𝑛 ) ∩ ( 𝐹𝑘 ) ) = ∅ ) )
191 163 190 sylibr ( 𝜑Disj 𝑛𝑍 ( 𝐹𝑛 ) )
192 108 110 191 jca31 ( 𝜑 → ( ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹𝑛 ) = 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸𝑛 ) ∧ 𝑛𝑍 ( 𝐹𝑛 ) = 𝑛𝑍 ( 𝐸𝑛 ) ) ∧ Disj 𝑛𝑍 ( 𝐹𝑛 ) ) )