Step |
Hyp |
Ref |
Expression |
1 |
|
iundjiun.nph |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
iundjiun.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
3 |
|
iundjiun.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ 𝑉 ) |
4 |
|
iundjiun.f |
⊢ 𝐹 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
5 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
6 |
5
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
9 |
|
nfiu1 |
⊢ Ⅎ 𝑛 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) |
10 |
8 9
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) |
11 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) |
12 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → 𝜑 ) |
13 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
14 |
2
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑁 ) = 𝑍 |
15 |
13 14
|
eleqtrdi |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛 ∈ 𝑍 ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → 𝑛 ∈ 𝑍 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
18 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ∈ 𝑉 ) |
19 |
18
|
difexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
20 |
4
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
21 |
17 19 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
22 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
23 |
21 22
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
24 |
12 16 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
25 |
24
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
26 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
27 |
25 26
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
28 |
|
rspe |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
29 |
11 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
30 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
31 |
29 30
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
32 |
31
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) → 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) ) ) |
33 |
1 10 32
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) → 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) → 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) ) |
35 |
7 34
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
36 |
35
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
37 |
|
dfss3 |
⊢ ( ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ↔ ∀ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
38 |
36 37
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
39 |
|
fzssuz |
⊢ ( 𝑁 ... 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑁 ) |
40 |
39
|
a1i |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) → ( 𝑁 ... 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
41 |
30
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
42 |
|
nfv |
⊢ Ⅎ 𝑛 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) |
43 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑖 ) ) |
44 |
43
|
eleq2d |
⊢ ( 𝑛 = 𝑖 → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↔ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
45 |
42 44
|
uzwo4 |
⊢ ( ( ( 𝑁 ... 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ∧ ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
46 |
40 41 45
|
syl2anc |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
48 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) → 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
49 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) |
50 |
|
nfra1 |
⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) |
51 |
49 50
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
52 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → 𝑖 ∈ ℤ ) |
53 |
52
|
zred |
⊢ ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → 𝑖 ∈ ℝ ) |
54 |
53
|
adantl |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ∈ ℝ ) |
55 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛 ∈ ℤ ) |
56 |
55
|
zred |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛 ∈ ℝ ) |
57 |
56
|
adantr |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑛 ∈ ℝ ) |
58 |
|
1red |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 1 ∈ ℝ ) |
59 |
57 58
|
resubcld |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑛 − 1 ) ∈ ℝ ) |
60 |
|
elfzolem1 |
⊢ ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → 𝑖 ≤ ( 𝑛 − 1 ) ) |
61 |
60
|
adantl |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ≤ ( 𝑛 − 1 ) ) |
62 |
57
|
ltm1d |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑛 − 1 ) < 𝑛 ) |
63 |
54 59 57 61 62
|
lelttrd |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 < 𝑛 ) |
64 |
63
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 < 𝑛 ) |
65 |
|
simplr |
⊢ ( ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
66 |
|
elfzel1 |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑁 ∈ ℤ ) |
67 |
66
|
adantr |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑁 ∈ ℤ ) |
68 |
|
elfzel2 |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑚 ∈ ℤ ) |
69 |
68
|
adantr |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑚 ∈ ℤ ) |
70 |
52
|
adantl |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ∈ ℤ ) |
71 |
|
elfzole1 |
⊢ ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → 𝑁 ≤ 𝑖 ) |
72 |
71
|
adantl |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑁 ≤ 𝑖 ) |
73 |
69
|
zred |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑚 ∈ ℝ ) |
74 |
|
1red |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 1 ∈ ℝ ) |
75 |
56 74
|
resubcld |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( 𝑛 − 1 ) ∈ ℝ ) |
76 |
68
|
zred |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑚 ∈ ℝ ) |
77 |
56
|
ltm1d |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( 𝑛 − 1 ) < 𝑛 ) |
78 |
|
elfzle2 |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → 𝑛 ≤ 𝑚 ) |
79 |
75 56 76 77 78
|
ltletrd |
⊢ ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( 𝑛 − 1 ) < 𝑚 ) |
80 |
79
|
adantr |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑛 − 1 ) < 𝑚 ) |
81 |
54 59 73 61 80
|
lelttrd |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 < 𝑚 ) |
82 |
54 73 81
|
ltled |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ≤ 𝑚 ) |
83 |
67 69 70 72 82
|
elfzd |
⊢ ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ∈ ( 𝑁 ... 𝑚 ) ) |
84 |
83
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ∈ ( 𝑁 ... 𝑚 ) ) |
85 |
|
rspa |
⊢ ( ( ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ) → ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
86 |
65 84 85
|
syl2anc |
⊢ ( ( ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
87 |
86
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
88 |
64 87
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) |
89 |
88
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) → ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
90 |
51 89
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) |
91 |
|
ralnex |
⊢ ( ∀ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ↔ ¬ ∃ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) |
92 |
90 91
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) → ¬ ∃ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) |
93 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) |
94 |
92 93
|
sylnibr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) → ¬ 𝑥 ∈ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
95 |
94
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) → ¬ 𝑥 ∈ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
96 |
48 95
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) → 𝑥 ∈ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
97 |
16 21
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
98 |
97
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
99 |
98
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
100 |
96 99
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) ∧ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) → 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
101 |
100
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ) → ( ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) → 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
102 |
101
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) → ( ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) → 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
103 |
1 102
|
reximdai |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) → ( ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ∧ ∀ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝑖 < 𝑛 → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑖 ) ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
105 |
47 104
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
106 |
105 5
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) ) |
107 |
38 106
|
eqelssd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
108 |
107
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
109 |
2
|
iuneqfzuz |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) → ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
110 |
108 109
|
syl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
111 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑚 ) ) |
112 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑁 ..^ 𝑛 ) = ( 𝑁 ..^ 𝑚 ) ) |
113 |
112
|
iuneq1d |
⊢ ( 𝑛 = 𝑚 → ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) |
114 |
111 113
|
difeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ 𝑚 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) ) |
115 |
114
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑚 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) ) |
116 |
4 115
|
eqtri |
⊢ 𝐹 = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑚 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) ) |
117 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑛 < 𝑘 ) → 𝑛 ∈ 𝑍 ) |
118 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑛 < 𝑘 ) → 𝑘 ∈ 𝑍 ) |
119 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑛 < 𝑘 ) → 𝑛 < 𝑘 ) |
120 |
2 116 117 118 119
|
iundjiunlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑛 < 𝑘 ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
121 |
120
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ 𝑛 < 𝑘 ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
122 |
|
simpll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ) |
123 |
|
neqne |
⊢ ( ¬ 𝑛 = 𝑘 → 𝑛 ≠ 𝑘 ) |
124 |
|
id |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍 ) |
125 |
124 2
|
eleqtrdi |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
126 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑘 ∈ ℤ ) |
127 |
125 126
|
syl |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
128 |
127
|
zred |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℝ ) |
129 |
128
|
adantl |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℝ ) |
130 |
129
|
ad2antrr |
⊢ ( ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑛 ≠ 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 ∈ ℝ ) |
131 |
|
id |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍 ) |
132 |
131 2
|
eleqtrdi |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
133 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑛 ∈ ℤ ) |
134 |
132 133
|
syl |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
135 |
134
|
zred |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℝ ) |
136 |
135
|
ad3antrrr |
⊢ ( ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑛 ≠ 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑛 ∈ ℝ ) |
137 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → ¬ 𝑛 < 𝑘 ) |
138 |
129
|
adantr |
⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 ∈ ℝ ) |
139 |
135
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑛 ∈ ℝ ) |
140 |
138 139
|
lenltd |
⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → ( 𝑘 ≤ 𝑛 ↔ ¬ 𝑛 < 𝑘 ) ) |
141 |
137 140
|
mpbird |
⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 ≤ 𝑛 ) |
142 |
141
|
adantlr |
⊢ ( ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑛 ≠ 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 ≤ 𝑛 ) |
143 |
|
simplr |
⊢ ( ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑛 ≠ 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑛 ≠ 𝑘 ) |
144 |
130 136 142 143
|
leneltd |
⊢ ( ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑛 ≠ 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 < 𝑛 ) |
145 |
123 144
|
sylanl2 |
⊢ ( ( ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 < 𝑛 ) |
146 |
145
|
ad5ant2345 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → 𝑘 < 𝑛 ) |
147 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) ) |
148 |
|
incom |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ∩ ( 𝐹 ‘ 𝑛 ) ) |
149 |
148
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) ∧ 𝑘 < 𝑛 ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
150 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) ∧ 𝑘 < 𝑛 ) → 𝑘 ∈ 𝑍 ) |
151 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) ∧ 𝑘 < 𝑛 ) → 𝑛 ∈ 𝑍 ) |
152 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) ∧ 𝑘 < 𝑛 ) → 𝑘 < 𝑛 ) |
153 |
2 116 150 151 152
|
iundjiunlem |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) ∧ 𝑘 < 𝑛 ) → ( ( 𝐹 ‘ 𝑘 ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
154 |
149 153
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) ∧ 𝑘 < 𝑛 ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
155 |
147 154
|
sylanb |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑘 < 𝑛 ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
156 |
122 146 155
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) ∧ ¬ 𝑛 < 𝑘 ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
157 |
121 156
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ¬ 𝑛 = 𝑘 ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
158 |
157
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( ¬ 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) |
159 |
|
df-or |
⊢ ( ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ↔ ( ¬ 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) |
160 |
158 159
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) |
161 |
160
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∀ 𝑘 ∈ 𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) |
162 |
161
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 → ∀ 𝑘 ∈ 𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) ) |
163 |
1 162
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) |
164 |
|
nfcv |
⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑛 ) |
165 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
166 |
4 165
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐹 |
167 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑚 |
168 |
166 167
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) |
169 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
170 |
164 168 169
|
cbvdisj |
⊢ ( Disj 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ↔ Disj 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ) |
171 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
172 |
171
|
disjor |
⊢ ( Disj 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ↔ ∀ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑚 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) |
173 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑍 |
174 |
|
nfv |
⊢ Ⅎ 𝑛 𝑚 = 𝑘 |
175 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
176 |
166 175
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑘 ) |
177 |
168 176
|
nfin |
⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) |
178 |
|
nfcv |
⊢ Ⅎ 𝑛 ∅ |
179 |
177 178
|
nfeq |
⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ |
180 |
174 179
|
nfor |
⊢ Ⅎ 𝑛 ( 𝑚 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
181 |
173 180
|
nfralw |
⊢ Ⅎ 𝑛 ∀ 𝑘 ∈ 𝑍 ( 𝑚 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
182 |
|
nfv |
⊢ Ⅎ 𝑚 ∀ 𝑘 ∈ 𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
183 |
|
equequ1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 = 𝑘 ↔ 𝑛 = 𝑘 ) ) |
184 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
185 |
184
|
ineq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) ) |
186 |
185
|
eqeq1d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ↔ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) |
187 |
183 186
|
orbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ↔ ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) ) |
188 |
187
|
ralbidv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑘 ∈ 𝑍 ( 𝑚 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) ) |
189 |
181 182 188
|
cbvralw |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑚 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑚 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ↔ ∀ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) |
190 |
170 172 189
|
3bitri |
⊢ ( Disj 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑛 = 𝑘 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) ) |
191 |
163 190
|
sylibr |
⊢ ( 𝜑 → Disj 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) |
192 |
108 110 191
|
jca31 |
⊢ ( 𝜑 → ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ∧ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∧ Disj 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) ) |