| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iundjiunlem.z |
|
| 2 |
|
iundjiunlem.f |
|
| 3 |
|
iundjiunlem.j |
|
| 4 |
|
iundjiunlem.k |
|
| 5 |
|
iundjiunlem.lt |
|
| 6 |
|
incom |
|
| 7 |
|
simpl |
|
| 8 |
|
simpr |
|
| 9 |
|
fveq2 |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
iuneq1d |
|
| 12 |
9 11
|
difeq12d |
|
| 13 |
|
fvex |
|
| 14 |
13
|
difexi |
|
| 15 |
12 2 14
|
fvmpt |
|
| 16 |
4 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
8 17
|
eleqtrd |
|
| 19 |
18
|
eldifbd |
|
| 20 |
3 1
|
eleqtrdi |
|
| 21 |
1 4
|
eluzelz2d |
|
| 22 |
20 21 5
|
elfzod |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
ssiun2s |
|
| 25 |
22 24
|
syl |
|
| 26 |
25
|
ssneld |
|
| 27 |
7 19 26
|
sylc |
|
| 28 |
|
eldifi |
|
| 29 |
27 28
|
nsyl |
|
| 30 |
|
fveq2 |
|
| 31 |
|
oveq2 |
|
| 32 |
31
|
iuneq1d |
|
| 33 |
30 32
|
difeq12d |
|
| 34 |
|
fvex |
|
| 35 |
34
|
difexi |
|
| 36 |
33 2 35
|
fvmpt |
|
| 37 |
3 36
|
syl |
|
| 38 |
37
|
adantr |
|
| 39 |
29 38
|
neleqtrrd |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
|
disj |
|
| 42 |
40 41
|
sylibr |
|
| 43 |
6 42
|
eqtrid |
|