Metamath Proof Explorer


Theorem elfzolem1

Description: A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion elfzolem1 KM..^NKN1

Proof

Step Hyp Ref Expression
1 id KM..^NKM..^N
2 elfzoel2 KM..^NN
3 simpl KM..^NNKM..^N
4 fzoval NM..^N=MN1
5 4 adantl KM..^NNM..^N=MN1
6 3 5 eleqtrd KM..^NNKMN1
7 elfzle2 KMN1KN1
8 6 7 syl KM..^NNKN1
9 1 2 8 syl2anc KM..^NKN1